模拟电路设计(32)---乙类推挽功率放大器

这篇具有很好参考价值的文章主要介绍了模拟电路设计(32)---乙类推挽功率放大器。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

乙类推挽功率放大器工作原理

由于甲类功率放大器的静态工作电流很大,效率不会超过50%,而乙类功放静态电流为零,这样效率得以提高。但乙类工作状态,晶体管只有半个周期工作,信号波形被削去一半,将产生严重的失真。

如果使两只相同的晶体管交替工作,一只工作在信号正半周期,另一只工作在信号负半周期,这样两只晶体管犹如一推一挽,在负载上形成完整的波形。如下图所示为推挽放大器的工作原理图,图中Q1为NPN型晶体管,Q2为PNP型晶体管,电路采用正负两组电源供电。

模拟电路设计(32)---乙类推挽功率放大器

功率放大器原理图

无信号时,两管都截止。当输入信号正半周时,Q1导通Q2截止,在负载RL上输出正半周信号;当输入信号为负半周时,Q1截止Q2导通,在负载RL上输出负半周信号。这样在一个周期内,Q1、Q2交替工作,在负载RL上合成一个完整的输出波形,如下图所示:

模拟电路设计(32)---乙类推挽功率放大器

推挽放大器工作状态

乙类推挽功率放大器的参数计算

输出功率Po

整个放大器(两个晶体管)的输出功率为:Po=IcmUcem/2,式中Ucem为输出电压,Icm为输出电流。若不考虑晶体管的饱和压降,则输出功率的最大值为:Pomax=V2/2RL

集电极最大功耗PCmax

PCmax=V2/π2RL=2Pomax/π2≈0.2Pomax此公式可作为用来选择功率管的依据。

集电极效率η

集电极效率是集电极输出功率与电源供给功率之比,它与晶体管的电压利用系数(晶体管输出电压与电源电压之比)有关,当电压利用系数为1时效率最高,即:ηCmax=π/4=78.5%

晶体管的耐压

放大器工作时晶体管EC极可能承受的最大耐压为电源电压的两倍,即要求晶体管的耐压BVCEO>2Ec,这也是选取晶体管的一条依据。

乙类推挽功率放大器的非线性失真

推挽电路对偶次谐波的抑制

在理想情况下,若推挽电路的两只晶体管电流、电压波形完全对称,则输出电流中将没有偶次谐波成分,及推挽电路由已知偶次谐波的作用。实际上由于两管特性总有差异,电路也不可能完全对称,因此输出电流中还会有偶次谐波成分。为了减少非线性失真,应尽量精选配对管子。

交越失真与工作点的选择

由于晶体管的输入特性和输出特性,在电流趋于零时,都有一个非线性失真特别严重的区域,所以iC在开始导通的一段时间里增长很慢,当iC1与iC2相互交替时,(iC1、iC2)的波形和输入波形相差较大。这种乙类推挽放大器所特有的失真称为交越失真,其原理如下图所示:

模拟电路设计(32)---乙类推挽功率放大器

​交越失真示意图

为消除交越失真,可分别给两只晶体管的发射结加很小的正偏压,让两只晶体管在静态时各有一个很小的Ic流过。这样,既可以消除交越失真,又不会对效率有很大影响。严格来说,此时晶体管已工作在甲乙类状态,但由于静态偏压较小,所以一般仍称为乙类放大器,以区别静态电流较大的甲乙类放大器。

另外,整理了一些电子工程类的资料,分享给大家,目前有模拟电路、单片机、C语言、PCB设计、电源相关、FPGA、EMC、物联网、Linux相关学习资料,还有针对大学生的资料包,后续还会有更多资料分享给大家,助力大家学习,成就梦想~

博主福利:免费获取电子工程类学习资料https://mp.weixin.qq.com/mp/appmsgalbum?__biz=MzkzOTM5NTE0OQ==&action=getalbum&album_id=2532293941282209792#wechat_redirect文章来源地址https://www.toymoban.com/news/detail-409249.html

到了这里,关于模拟电路设计(32)---乙类推挽功率放大器的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 模拟电路设计(9)--- VMOSFET

    模拟电路设计(9)--- VMOSFET

    MOS器件虽然漏极电流可以达到数安培,漏源电压可以达到100V以上,但是由于漏源电阻大、频率特性差、硅片面积利用率低等缺点,使得MOSFET在功率上有很大的限制。随着VMOS技术移植到MOS功率器件后,VMOSFET的耐压可达到1000V以上,电流处理能力可达到几百安培。这得益于VMOS

    2024年02月06日
    浏览(13)
  • 模拟电路设计(14)---三点式振荡器

    模拟电路设计(14)---三点式振荡器

    常用三点式振荡器 晶体三极管其增益适中、工作频带宽、体积小巧,实际电路设计中常用来构成简洁可靠的三点式LC振荡器,是各种振荡器的主流电路。其交流等效电路组态见下图: 三点式振荡器交流等效电路 上图所示三点式LC振荡器的交流等效电路,与实际原理图不同,是

    2024年02月11日
    浏览(10)
  • 模拟CMOS集成电路设计入门学习(3)

    模拟CMOS集成电路设计入门学习(3)

    共源极 (1)采用电阻负载的共源极 电路的大信号和小信号的特性我们都需要研究。{电路的 输入阻抗 在 低频 时非常高} ①从0开始增大, 截止 ,; ②接近时,开始 导通 ,电流流经使减小; ③进一步增大,也变大但还小于时,NMOS管仍处于 饱和区 ,直到 即=时( 预夹断 )

    2024年02月07日
    浏览(46)
  • 【模拟CMOS集成电路设计】学习笔记(一)

      持续更新,若有后续更新,更新链接将附于文末,后续有时间会对内容更新。   放大器放大的是小信号,只有在特定的静态工作点下,小信号放大才有意义,因此一些小信号指标常与某个DC点相关联,若小信号幅度超过系统输入范围要求,则将会发生线性失真,合适的

    2024年02月10日
    浏览(48)
  • 模拟CMOS集成电路设计入门学习(6)

    模拟CMOS集成电路设计入门学习(6)

    共源共栅结构(Cascode) 回顾: 共源级 中晶体管可以将电压信号转换为电流信号; 共栅级 的输入信号可以是电流。 将共源级和共栅级进行级联:  :输入器件;:共源共栅器件; {流经和的电流相等} (1)分析共源共栅结构的偏置条件   ① 为了保证工作在饱和区 ,必须满

    2024年02月09日
    浏览(50)
  • 【模拟CMOS集成电路设计】带隙基准(Bandgap)设计与仿真

    【模拟CMOS集成电路设计】带隙基准(Bandgap)设计与仿真

      此次设计,未使用运放,使用电流镜结构为基础的Bandgap来满足设计指标,主要目标是在结构简单的前提下满足设计指标要求。   本次设计指标,如表1所示   ( 线性调节率 指输出基准电压随直流VDD的变化率,电源电压从电路正常工作的最小电压起到额定电源电压为止

    2024年02月13日
    浏览(51)
  • 模拟电路设计(12)--- 运算放大器闭环增益计算及放大器电路稳定性分析

    模拟电路设计(12)--- 运算放大器闭环增益计算及放大器电路稳定性分析

    闭环增益计算 运算放大器深度负反馈状态,放大电路的增益为1/F(s)。而在实际应用中很少去计算F(s),一般通过深度负反馈时的“虚短”、“虚断”概念去计算。深度负反馈时,1+A(s)F(s) 1,则A(s)F(s) = Xf(s)/X’i(s) 1,而Xi(s)=X’i(s)+Xf(s),那么X’i(s)可以忽略不计,Xi(s)=Xf(s)。 对于

    2024年02月16日
    浏览(12)
  • 模拟电路设计(17)---典型RC正弦波振荡器

    模拟电路设计(17)---典型RC正弦波振荡器

    采用LC器件作为振荡电路的反馈网络可以达到很高的输出频率,器件比较容易实现小体积。但是要求振荡器输出几十或者几百Hz信号时,LC器件的取值会很大,很难实现实用的产品,此时采用RC选频网络就会有很大的优势。 RC、LC反馈振荡器的最大区别是振幅的稳定机理,LC振荡

    2023年04月08日
    浏览(10)
  • STM32 复位电路设计

    STM32 复位电路设计

    在此之前我是个只会抄写原理图的工程师,每当遇到一个问题时,确需要解决很久,最根本的原因在于不明白其中的原理,这次补充一下单片机复位电路设计 在做一件事情之前需要明白为什么要这么做,我们为什么要设计复位电路呢?一下几点原因是我总结出来的。 当你的

    2023年04月08日
    浏览(9)
  • 硬件设计--stm32自动下载电路设计

    硬件设计--stm32自动下载电路设计

    1、Stm32 一键下载电路详解 2、启动模式,BOOT0和BOOT1详解 3、STM32自动ISP电路设计 4、STM32 USB接口 一键下载电路详解与过程分析 参考博客:FlyMcu - 用于STM32芯片ISP串口程序一键下载的免费软件 下面是stm32自动下载电路原理图。 正常使用下BOOT1引脚需要接地(不需要debug调试),也就

    2024年02月16日
    浏览(13)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包