【Python】Python中使用Matplotlib绘制折线图、散点图、饼形图、柱形图和箱线图

这篇具有很好参考价值的文章主要介绍了【Python】Python中使用Matplotlib绘制折线图、散点图、饼形图、柱形图和箱线图。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

【Python】使用Matplotlib绘制折线图、散点图、饼形图、柱形图和箱线图

python数据可视化课程,实验二

Matplotlib 中文API:API 概览 | Matplotlib

一、实验任务的数据背景

提供的源数据(数据文件employee.csv)共拥有4个特征,分别为就业人员、第一产业就业人员、第二产业就业人员、第三产业就业人员。根据3个产业就业人员的数量绘制散点图和折线图。根据各个特征随着时间推移发生的变化情况,可以分析出未来3个产业就业人员的变化趋势。绘制3个产业就业人员数据的饼图、柱形图和箱线图。通过柱形图可以对比分析各产业就业人员数量,通过饼图可以发现各产业就业人员的变化,绘制每个特征的箱线图则可以发现不同特征增长或减少的速率变化。

二、实验任务和要求

1)使用pandas库读取3个产业就业人员数据。

2)绘制2000—2019年各产业就业人员散点图。

3)绘制2000-—2019年各产业就业人员折线图。

4)绘制2019年各产业就业人员饼图。

5)绘制2019年各产业就业人员柱形图。

6)绘制2000—2019年各产业就业人员年末总人数箱线图。

三、绘图结果与程序代码

1、employee.csv文件
指标 就业人员(万人) 第一产业就业人员(万人) 第二产业就业人员(万人) 第三产业就业人员(万人)
2000年 72085 36042.5 16219.1 19823.4
2001年 72797 36398.5 16233.7 20164.8
2002年 73280 36640 15681.9 20958.1
2003年 73736 36204.4 15927 21604.6
2004年 74264 34829.8 16709.4 22724.8
2005年 74647 33441.9 17766 23439.2
2006年 74978 31940.6 18894.5 24142.9
2007年 75321 30731 20186 24404
2008年 75564 29923.3 20553.4 25087.2
2009年 75828 28890.5 21080.2 25857.3
2010年 76105 27930.5 21842.1 26332.3
2011年 76420 26594 22544 27282
2012年 76704 25773 23241 27690
2013年 76977 24171 23170 29636
2014年 77253 22790 23099 31364
2015年 77451 21919 22693 32839
2016年 77603 21496 22350 33757
2017年 77640 20944 21824 34872
2018年 77586 20258 21390 35938
2019年 77471 19445.2 21304.5 36721.3
2、绘图结果
  • 散点图

【Python】Python中使用Matplotlib绘制折线图、散点图、饼形图、柱形图和箱线图

  • 折线图

【Python】Python中使用Matplotlib绘制折线图、散点图、饼形图、柱形图和箱线图

  • 饼图

【Python】Python中使用Matplotlib绘制折线图、散点图、饼形图、柱形图和箱线图

  • 柱形图

【Python】Python中使用Matplotlib绘制折线图、散点图、饼形图、柱形图和箱线图

  • 箱线图

【Python】Python中使用Matplotlib绘制折线图、散点图、饼形图、柱形图和箱线图

3、代码
import pandas as pd
import matplotlib.pyplot as plt

# 何壮壮 20302211009

# 读取数据
data = pd.read_csv('employee.csv', encoding='utf-8')

# 绘制2000-2019个产业就业人员散点图
# 解决标签中文乱码
plt.rcParams['font.sans-serif'] = ['SimHei']
# 调整画布尺寸
plt.figure(figsize=(12, 5))
# 第一产业就业人员(万人)
plt.scatter(data[data.columns[0]], data[data.columns[2]], color='red', label='第一产业')
# 第二产业就业人员(万人)
plt.scatter(data[data.columns[0]], data[data.columns[3]], color='blue', label='第二产业')
# # 第三产业就业人员(万人)
plt.scatter(data[data.columns[0]], data[data.columns[4]], color='black', label='第三产业')
# 设置x轴标签
plt.xlabel('年份')
# 设置y轴标签
plt.ylabel('就业人数(百万)')
# 显示图例
plt.legend()
plt.title('2000-2019个产业就业人员散点图')
# 显示散点图
plt.show()


# 绘制2000-2019个产业就业人员折线图
# 调整画布尺寸
plt.figure(figsize=(12, 5))
# 第一产业就业人员(万人)
plt.plot(data[data.columns[0]], data[data.columns[2]], color='r', label='第一产业')
# 第二产业就业人员(万人)
plt.plot(data[data.columns[0]], data[data.columns[3]], color='b', label='第二产业')
# 第三产业就业人员(万人)
plt.plot(data[data.columns[0]], data[data.columns[4]], color='k', label='第三产业')
# 设置x轴标签
plt.xlabel('年份')
# 设置y轴标签
plt.ylabel('就业人数(百万)')
# 显示图例
plt.legend()
# 显示标题
plt.title('2000-2019个产业就业人员折线图')
# 显示折线图
plt.show()


# 绘制2019年个产业就业人员饼图
# [-1][2:] 表示最后一行数据(即2019年)的第一、二、三产业数据
plt.pie(data.values[-1][2:], labels=['第一产业', '第二产业', '第三产业'], autopct="%1.1f%%", startangle=90)
# 显示标题
plt.title('2019年各产业就业人员饼图')
# 显示饼图
plt.show()


# 绘制2019年个产业就业人员柱形图
# 调整画布尺寸
plt.figure(figsize=(12, 5))
# [-1][2:] 表示最后一行数据(即2019年)的第一、二、三产业数据
plt.bar(data.columns[2:], data.values[-1][2:])
# 在柱子顶部显示数值
for a, b in zip(data.columns[2:], data.values[-1][2:]):
    plt.text(a, b, b)
# 显示标题
plt.title('2019年各产业就业人员柱形图')
# 显示饼图
plt.show()


# 绘制2000—2019年各产业就业人员年末总人数箱线图
plt.boxplot([data[data.columns[2]], data[data.columns[3]], data[data.columns[4]]], labels=data.columns[2:])
# 显示标题
plt.title("2000—2019年各产业就业人员年末总人数箱线图")
# 显示图表
plt.show()

本文仅供学习参考!文章来源地址https://www.toymoban.com/news/detail-414545.html

到了这里,关于【Python】Python中使用Matplotlib绘制折线图、散点图、饼形图、柱形图和箱线图的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包