【3D目标检测】KITTI数据集介绍

这篇具有很好参考价值的文章主要介绍了【3D目标检测】KITTI数据集介绍。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

概述

KITTI数据集很大,包括了很多任务,使用的训练样本7481个,测试样本7518个。但测试样本我们是不可见的,所以一般将将7481个训练样本划分为3712与3769分别作为训练集和测试集。
下载部分参考:OpenPCDet——环境配置和训练测试(升级系统、Nvidia驱动、cuda11.3、cudnn8.2)
具体解释部分参考:【KITTI】KITTI数据集简介(一) — 激光雷达数据

数据集下载

我们可以从官网下载,也可以网友们分享的百度云链接下载
下载数据:http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d
百度云链接: https://pan.baidu.com/s/1sywToVQu3eIBG8zcAXwTVw ,提取码:2lyj

基于点云的算法需要的是以下部分:包括激光雷达数据(data_ object_velodyne)、图像数据(data_ object_image_ 2)、标注数据(data_ object_label 2)以及标定校准数据(data_ object_calib
【3D目标检测】KITTI数据集介绍
或者
【3D目标检测】KITTI数据集介绍

激光雷达数据(data_ object_velodyne)

解压下载后的data_ object_velodyne.zip文件,包含了training和testing两个文件夹,这两个文件夹下各自包含一个velodyne文件夹。velodyne文件夹下存储了点云文件,以bin格式存储。激光雷达坐标系中,z方向是高度方向,x方向是汽车前进方向,前进左手边方向为y方向,满足右手定则

以“000000.bin”文件为例,点云数据以浮点二进制文件格式存储,每行包含8个数据,每个数据由四位十六进制数表示(浮点数),每个数据通过空格隔开。一个点由四个浮点数数据构成,分别表示点云的x、y、z、r(强度 or 反射值)。

点云的存储格式有很多,KITTI中采用的是bin格式,bin格式将全部数据放在一行中。

读取与可视化如下:

# -*- coding: utf-8 -*-
"""
乐乐感知学堂公众号
@author: https://blog.csdn.net/suiyingy
"""
 
from mayavi import mlab
import numpy as np
 
def viz_mayavi(points, vals="distance"):
    x = points[:, 0]  # x position of point
    y = points[:, 1]  # y position of point
    z = points[:, 2]  # z position of point
    fig = mlab.figure(bgcolor=(0, 0, 0), size=(640, 360))
    mlab.points3d(x, y, z,
                          z,          # Values used for Color
                          mode="point",
                          colormap='spectral', # 'bone', 'copper', 'gnuplot'
                          # color=(0, 1, 0),   # Used a fixed (r,g,b) instead
                          figure=fig,
                          )
    mlab.show()
 
if  __name__ == '__main__':
    points = np.fromfile('000001.bin', dtype=np.float32).reshape([-1, 4])
    viz_mayavi(points)

图像数据(data_ object_image_ 2)

KITTI数据集种共包含了4相机数据,2个灰度相机和2个彩色相机,其中image_2存储了左侧彩色相机采集的RGB图像数据(RGB)。相机坐标系中,y方向是高度方向,以向下为正方向;z方向是汽车前进方向;前进右手边方向为x方向(车身方向),满足右手定则。

文件夹下进一步分为训练集和测试集,存储方式为png格式。KITTI相机的分辨率是1392x512,而image_2种存储的图像是矫正后的图像,分辨率为1242x375。

标注数据(data_ object_label 2)

文件夹下只有训练的标注,存储方式为txt格式。

标注文件中16个属性,即16列。但我们只能够看到前15列数据,因为第16列是针对测试场景下目标的置信度得分,也可以认为训练场景中得分全部为1但是没有专门标注出来。下图是000001.txt的标注内容和对应属性介绍。

Pedestrian 0.00 0 -0.20 712.40 143.00 810.73 307.92 1.89 0.48 1.20 1.84 1.47 8.41 0.01

【3D目标检测】KITTI数据集介绍

第1列
目标类比别(type),共有8种类别,分别是Car、Van、Truck、Pedestrian、Person_sitting、Cyclist、Tram、Misc或’DontCare。DontCare表示某些区域是有目标的,但是由于一些原因没有做标注,比如距离激光雷达过远。但实际算法可能会检测到该目标,但没有标注,这样会被当作false positive (FP)。这是不合理的。用DontCare标注后,评估时将会自动忽略这个区域的预测结果,相当于没有检测到目标,这样就不会增加FP的数量了。此外,在 2D 与 3D Detection Benchmark 中只针对 Car、Pedestrain、Cyclist 这三类。

第2列
截断程度(truncated),表示处于边缘目标的截断程度,取值范围为0~1,0表示没有截断,取值越大表示截断程度越大。处于边缘的目标可能只有部分出现在视野当中,这种情况被称为截断。

第3列
遮挡程度(occlude),取值为(0,1,2,3)。0表示完全可见,1表示小部分遮挡,2表示大部分遮挡,3表示未知(遮挡过大)。

第4列
观测角度(alpha),取值范围为( − π , π -\pi, \pi π,π)。是在相机坐标系下,以相机原点为中心,相机原点到物体中心的连线为半径,将物体绕相机y轴旋转至相机z轴,此时物体方向与相机x轴的夹角。这相当于将物体中心旋转到正前方后,计算其与车身方向的夹角。

第5-8列
二维检测框(bbox),目标二维矩形框坐标,分别对应left、top、right、bottom,即左上(xy)和右下的坐标(xy)。

第9-11列
三维物体的尺寸(dimensions),分别对应高度、宽度、长度,以米为单位。

第12-14列
中心坐标(location),三维物体中心在相机坐标系下的位置坐标(x,y,z),单位为米。

第15列
旋转角(rotation_y),取值范围为(-pi, pi)。表示车体朝向,绕相机坐标系y轴的弧度值,即物体前进方向与相机坐标系x轴的夹角。rolation_y与alpha的关系为alpha=rotation_y - theta,theta为物体中心与车体前进方向上的夹角。alpha的效果是从正前方看目标行驶方向与车身方向的夹角,如果物体不在正前方,那么旋转物体或者坐标系使得能从正前方看到目标,旋转的角度为theta。

第16列
置信度分数(score),仅在测试评估的时候才需要用到。置信度越高,表示目标越存在的概率越大。

标定校准数据(data_ object_calib)

文件夹下进一步分为训练集的校准数据和测试集的校准数据,存储方式为txt格式,标定校准数据的主要作用是把激光雷达坐标系测得的点云坐标转换到相机坐标中去。

这部分内容有点多,直接看大佬原文吧,【KITTI】KITTI数据集简介(四) — 标定校准数据calib文章来源地址https://www.toymoban.com/news/detail-414636.html

到了这里,关于【3D目标检测】KITTI数据集介绍的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 3D检测数据集 DAIR-V2X-V 转为Kitti格式 | 可视化

    3D检测数据集 DAIR-V2X-V 转为Kitti格式 | 可视化

    本文分享在DAIR-V2X-V数据集中,将标签转为Kitti格式,并可视化3D检测效果。 DAIR-V2X包括不同类型的数据集: DAIR-V2X-I DAIR-V2X-V DAIR-V2X-C V2X-Seq-SPD V2X-Seq-TFD DAIR-V2X-C-Example: google_drive_link V2X-Seq-SPD-Example: google_drive_link V2X-Seq-TFD-Example: google_drive_link 本文选择DAIR-V2X-V作为示例。 1、下

    2024年02月03日
    浏览(14)
  • 基于Kitti数据集的智能驾驶目标检测系统(PyTorch+Pyside6+YOLOv5模型)

    基于Kitti数据集的智能驾驶目标检测系统(PyTorch+Pyside6+YOLOv5模型)

    摘要:基于Kitti数据集的智能驾驶目标检测系统可用于日常生活中检测与定位行人(Pedestrian)、面包车(Van)、坐着的人(Person Sitting)、汽车(Car)、卡车(Truck)、骑自行车的人(Cyclist)、有轨电车(Tram)以及其他目标(Misc),利用深度学习算法可实现图片、视频、摄像

    2024年02月16日
    浏览(14)
  • 3D目标检测算法调研&FCOS/FCOS3D/FCOS3D++算法介绍

    3D目标检测算法调研&FCOS/FCOS3D/FCOS3D++算法介绍

    一、综述 3D检测背景 二维目标检测算法能识别物体的类别、平面坐标以及边长,是计算机视觉中的一个基本问题。但是对于自动驾驶来说,二维信息还不足以让汽车充分感知三维立体的真实世界,当一辆智能汽车需要在道路上平稳、安全地行驶时,它必须能感知到周围物体精

    2024年02月15日
    浏览(9)
  • 03- 目标检测数据集和标注工具介绍 (目标检测)

    03- 目标检测数据集和标注工具介绍 (目标检测)

    要点: 常用数据集和标注工具 标注工具 PPOCRLabel github地址:paddleocrlabel 参考文档:目标检测简介 - 知乎 1. PASCAL VOC VOC数据集 是目标检测经常用的一个数据集,自2005年起每年举办一次比赛,最开始只有4类,到2007年扩充为 20个类 ,共有两个常用的版本: 2007和2012 。学术界常

    2024年02月07日
    浏览(7)
  • 详解KITTI视觉3D检测模型CMKD: Cross-Modality Knowledge Distillation Network for Monocular 3D Object Detection

    详解KITTI视觉3D检测模型CMKD: Cross-Modality Knowledge Distillation Network for Monocular 3D Object Detection

    本文介绍一篇激光雷达监督视觉传感器的3D检测模型: CMKD ,论文收录于 ECCV2022 。 在本文中,作者提出了用于单目3D检测的 跨模态知识蒸馏 (CMKD) 网络 ,使用激光雷达模型作为教师模型,监督图像模型(图像模型为CaDDN)。 此外,作者通过 从大规模未标注的数据中提取知识

    2024年01月24日
    浏览(15)
  • 目标检测——目标检测概述

    目标检测——目标检测概述

    下载地址 0.5114435907762924 voc2010前,求取Recall11个点对应的presion,求平均 voc2010后,使用分段函数的线下面积 去除冗余检测框,保留最好的一个

    2024年02月16日
    浏览(10)
  • 【目标检测】1. 目标检测概述

    【目标检测】1. 目标检测概述

    目标检测 (Object Detection)实质上上多目标的定位,即在一个图片中定位多个目标物体,包括 分类 和 定位 ,也就是多个目标分别在哪里?分别属于那个类别?   图像分类常用算法:         VGG         GoogleNet         ResNet 目标检测常用算法:         RCNN        

    2024年03月10日
    浏览(15)
  • 【DOTA】目标检测数据集介绍与使用

    【DOTA】目标检测数据集介绍与使用

    every blog every motto: You can do more than you think. https://blog.csdn.net/weixin_39190382?type=blog DOTA 数据集简单介绍 1.1 简介 数据集包含来自不同的传感器和平台的航拍图。每张图像的像素尺寸在 800 × 800 到 20,000 × 20,000 之间,其中包含不同大小、方向和形状的物体。 时间 类别 图片数 实例

    2024年02月16日
    浏览(7)
  • [数据集][VOC][目标检测]河道垃圾水面漂浮物数据集目标检测可用yolo训练-1304张介绍

    数据集格式:Pascal VOC格式(不包含分割路径的txt文件和yolo格式的txt文件,仅仅包含jpg图片和对应的xml) 图片数量(jpg文件个数):1304 标注数量(xml文件个数):1304 标注类别数:1 标注类别名称:[\\\"trash\\\"] 每个类别标注的框数: trash count = 1386 数据集详细介绍: [数据集介绍][目标检测

    2024年02月05日
    浏览(11)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包