【场景生成与削减】基于蒙特卡洛法场景生成及启发式同步回带削减风电、光伏、负荷研究(Matlab代码实现)

这篇具有很好参考价值的文章主要介绍了【场景生成与削减】基于蒙特卡洛法场景生成及启发式同步回带削减风电、光伏、负荷研究(Matlab代码实现)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

 

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

相关知识:

基于概率距离削减法、蒙特卡洛削减法的风光场景不确定性削减(Matlab代码实现)

基于蒙特卡诺的风场景模型出力(Matlab代码实现)

风光场景削减及源荷不确定性的虚拟电厂随机优化调度研究(Matlab代码实现)

【场景削减】拉丁超立方抽样方法场景削减(Matlab代码实现)

【风场景生成与削减】【m-ISODATA、kmean、HAC】无监督聚类算法,用于捕获电力系统中风场景生成与削减研究(Matlab代码实现)

蒙特卡洛法也叫做统计模拟法,是一种采用随机抽样统计来估算的计算方法[24] 。它的基本思路是

利 用 已 知 目 标 函 数 y = f ( x1,,xn)对 随 机 变 量( x1,,xn)进行概率分布估计,对这些变量进行随机 抽样得到对应的 y 的特征值,通过大量抽样结果计算得出 y 的概率分布。随着抽样模拟次数的增多,蒙特卡洛法计算的结果与实际结果的误差越来越 小[25] 。针对蒙特卡洛法而言,最重要的是对一个(0,1) 的概率分布进行随机抽样统计,利用误差统计分析得到的累计概率密度函数正是一个在(0,1)上的概 率分布,这为使用蒙特卡洛法建立预测区间提供了理论上的支持。本文基于蒙特卡洛法场景生成及启发式同步回带削减风电、光伏、负荷,然后通过概率模型并根据weibull、beta、正态分布生成500次风电光伏、负荷场景,然后再进行削减到5个场景,得出每个场景的概率与每个对应场景相乘求和得到不确定性出力.

📚2 运行结果

【场景生成与削减】基于蒙特卡洛法场景生成及启发式同步回带削减风电、光伏、负荷研究(Matlab代码实现)

 【场景生成与削减】基于蒙特卡洛法场景生成及启发式同步回带削减风电、光伏、负荷研究(Matlab代码实现)

 【场景生成与削减】基于蒙特卡洛法场景生成及启发式同步回带削减风电、光伏、负荷研究(Matlab代码实现)

 【场景生成与削减】基于蒙特卡洛法场景生成及启发式同步回带削减风电、光伏、负荷研究(Matlab代码实现)

 【场景生成与削减】基于蒙特卡洛法场景生成及启发式同步回带削减风电、光伏、负荷研究(Matlab代码实现)

 【场景生成与削减】基于蒙特卡洛法场景生成及启发式同步回带削减风电、光伏、负荷研究(Matlab代码实现)

 【场景生成与削减】基于蒙特卡洛法场景生成及启发式同步回带削减风电、光伏、负荷研究(Matlab代码实现)

 【场景生成与削减】基于蒙特卡洛法场景生成及启发式同步回带削减风电、光伏、负荷研究(Matlab代码实现)

 【场景生成与削减】基于蒙特卡洛法场景生成及启发式同步回带削减风电、光伏、负荷研究(Matlab代码实现)

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]韦权,汤占军.基于SSA-VMD-SE-KELM结合蒙特卡洛法的风电功率区间预测[J].智慧电力,2022,50(09):59-66.文章来源地址https://www.toymoban.com/news/detail-418755.html

🌈4 Matlab代码实现

到了这里,关于【场景生成与削减】基于蒙特卡洛法场景生成及启发式同步回带削减风电、光伏、负荷研究(Matlab代码实现)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 蒙特卡洛算法

    蒙特卡洛算法

    定义 :蒙特卡洛算法是以概率和统计的理论、方法为基础的一种数值计算方法,将所求解的问题同一定的概率模型相联系,用计算机实现统计模拟或抽样,以获得问题的近似解,故又称随机抽样法或统计实验法。 适用范围 :可以较好的解决多重积分计算、微分方程求解、积

    2024年02月11日
    浏览(21)
  • 数学建模-蒙特卡洛模拟

    数学建模-蒙特卡洛模拟

    2024年02月15日
    浏览(13)
  • 蒙特卡洛树搜索(MCTS)详解

    蒙特卡洛树搜索(MCTS)详解

    蒙特卡洛树搜索是一种经典的树搜索算法,名镇一时的 AlphaGo 的技术背景就是结合蒙特卡洛树搜索和深度策略价值网络,因此击败了当时的围棋世界冠军。它对于求解这种大规模搜索空间的博弈问题极其有效,因为它的核心思想是 把资源放在更值得搜索的分枝上 ,即 算力集

    2024年01月18日
    浏览(13)
  • 强化学习:蒙特卡洛方法(MC)

    强化学习:蒙特卡洛方法(MC)

       以抛硬币为例,将结果(正面朝上或反面朝上)表示为作为随机变量 X X X ,如果正面朝上则 X = + 1 X=+1 X = + 1 ,如果反面朝上,则 X = − 1 X=-1 X = − 1 ,现在要计算 E [ X ] E[X] E [ X ] 。    我们通常很容易想到直接用定义来计算,因为我们知道正面朝上和反面朝上的概率都是

    2024年02月08日
    浏览(14)
  • 蒙特卡洛方法的数学基础-1

    蒙特卡洛方法的数学基础-1

    蒙特卡洛方法的数学基础-1 Bayes 公式 常用分布 Binominal Distribution Poisson Distribution Gaussian Distribution  Exponential Distribution Uniform Distribution 大数定理 均匀概率分布随机地取 N 个数 x i , 函数值之和的算术平均收敛于函数的期望值 算术平均收敛于真值 中心极限定理 n个相互独立分布

    2024年02月07日
    浏览(38)
  • 【机器学习】强化学习(三)蒙特卡洛算法

    【机器学习】强化学习(三)蒙特卡洛算法

    策略迭代算法和价值迭代算法为什么可以得到理论上的最优解,在实际问题中使用价值有限? 无模型算法 三、蒙特卡洛算法 蒙特卡洛(Monte Carlo)方法是一种基于样本的强化学习算法,它通过执行和学习代理(也就是我们编程的AI)环境交互的样本路径来学习。它不需要初始知

    2024年01月19日
    浏览(11)
  • 蒙特卡洛方法的收敛性和误差

    目录 1.收敛性 2.误差 3.减少方差的各种技巧 4.效率 5.优缺点 蒙特卡罗方法作为一种计算方法,其收敛性与误差是普遍关心的一个重要问题。由此可以总结出蒙特卡洛方法的优缺点。

    2024年02月06日
    浏览(10)
  • 多数问题求解之蒙特卡洛与分治法

    多数问题求解之蒙特卡洛与分治法

    多数问题(Majority Problem)是一个有多种求解方法的经典问题,其问题定义如下: 给定一个大小为 n n n 的数组,找出其中出现次数超过 n / 2 n/2 n /2 的元素 例如:当输入数组为 [ 5 , 3 , 5 , 2 , 3 , 5 , 5 ] [5, 3, 5, 2, 3, 5, 5] [ 5 , 3 , 5 , 2 , 3 , 5 , 5 ] ,则 5 5 5 是多数(majority)。 本文将

    2024年03月14日
    浏览(10)
  • 蒙特卡洛积分、重要性采样、低差异序列

    蒙特卡洛积分、重要性采样、低差异序列

    渲染的目标在于计算周围环境的光线有多少从表面像素点反射到相机视口中。要计算总的反射光,每个入射方向的贡献,必须将他们在半球上相加: 为入射光线  与法线  的夹角,为方便计算可以使用法线向量和入射向量(单位化)的乘积表示。  对于基于图像的光照,入射

    2024年02月03日
    浏览(9)
  • 16. 蒙特卡洛强化学习基本概念与算法框架

    蒙特卡洛强化学习(简称MC强化学习)是一种 无模型 强化学习算法,该算法无需知道马尔科夫决策环境模型,即不需要提前获得立即回报期望矩阵R(维度为(nS,nA))、状态转移概率数组P(维度为(nA,nS,nS)),而是通过与环境的反复交互,使用统计学方法,利用交互数据直接进行

    2024年01月21日
    浏览(10)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包