毕业设计-基于机器视觉道路视频车道线检测识别

这篇具有很好参考价值的文章主要介绍了毕业设计-基于机器视觉道路视频车道线检测识别。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

前言

课题背景和意义

实现技术思路

摄像机校准

​编辑

透视变换

 车道像素查找

 识别车道面积

实现效果图样例


前言


    📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

🚀对毕设有任何疑问都可以问学长哦!

本次分享的课题是

🎯基于机器视觉道路视频车道线检测

课题背景和意义

计算机视觉在自动化系统观测环境、预测该系统控制器输入值等方面起着至关重要的作用。本文介绍了使用计算机视觉技术进行车道检测的过程,并引导我们完成识别车道区域、计算道路RoC 和估计车道中心距离的步骤。

实现技术思路

摄像机校准

几乎所有摄像机使用的镜头在聚焦光线以捕捉图像时都存在一定的误差,因为这些光线由于折射在镜头边缘发生了弯曲。这种现象会导致图像边缘的扭曲。

def pointExtractor(fname):
    #number of boxes in the chessboard
    objp = np.zeros((6 * 9, 3), np.float32)
    objp[:, :2] = np.mgrid[0:9, 0:6].T.reshape(-1, 2)

    objpoints = []
    imgpoints = []

    images = glob.glob(fname)

    for idx, img in enumerate(images):
        image = cv2.imread(img)
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

        ret, corners = cv2.findChessboardCorners(gray, (9, 6), None)

        if ret == True:
            objpoints.append(objp)
            imgpoints.append(corners)
    return objpoints, imgpoints

def cameraCalibrator(objpoints, imgpoints, image):

    imgRes = (image.shape[0], image.shape[1])
    ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, imgRes, None, None)
    undistorted = cv2.undistort(image, mtx, dist, None, mtx)

    return undistorted

毕业设计-基于机器视觉道路视频车道线检测识别

透视变换

检测车道的第一步是调整我们的视觉系统,以鸟瞰的角度来观察前方的道路,这将有助于计算道路的曲率,因此将有助于我们预测未来几百米的转向角大小。自上而下视图的另一个好处是,它解决了车道线相交的问题。实际上只要沿道路行驶,车道线就是平行线。

鸟瞰图可以通过应用透视变换来实现,即将输入图像中车道区域四个点映射到所需点上,从而生成自顶向下的视图。这些点是根据个案确定,决定因素主要是摄像头在车辆中的位置及其视野。

def warp(image):
    w = image.shape[1]
    h = image.shape[0]

    src = np.float32([[200, 460], [1150, 460], [436, 220], [913, 220]])
    dst = np.float32([[300, 720], [1000, 720], [400, 0], [1200, 0]])

    M = cv2.getPerspectiveTransform(src, dst)
    invM = cv2.getPerspectiveTransform(dst, src)

    warped = cv2.warpPerspective(image, M, (image.shape[1], image.shape[0]), flags=cv2.INTER_LINEAR)

    return warped, 

毕业设计-基于机器视觉道路视频车道线检测识别

阈值

现在车道线是平行的,下一步将它们从输入图像上分割出来。输入图像包含RGB3个通道,车道线为白色或黄色。基于这个假设,输入图像可以转换为单个通道灰度图像,从而消除我们不需要的通道。另一个要转换为的颜色空间是HLS颜色空间,其中S通道可能会根据照明情况提供较好的结果。在以下示例中,将使用图像阈值,因为在给定的输入图像中它可以正常工作。

毕业设计-基于机器视觉道路视频车道线检测识别

 车道像素查找

预处理输入图像后,将在图像空间中确定并绘制车道。方法是在二进制图像(阈值图像)的下半部分绘制非零像素直方图,以观察模式

毕业设计-基于机器视觉道路视频车道线检测识别

 识别车道面积

滑动窗口有助于估计每个车道区域的中心,使用这些 x 和 y 像素定位函数search_around_poly()可以适合二阶多项曲线。该函数适合 f(y)而不是 f(x),因为通道在图像中是垂直的。

毕业设计-基于机器视觉道路视频车道线检测识别

实现效果图样例

毕业设计-基于机器视觉道路视频车道线检测识别

我是海浪学长,创作不易,欢迎点赞、关注、收藏、留言。

毕设帮助,疑难解答,欢迎打扰!文章来源地址https://www.toymoban.com/news/detail-430256.html

到了这里,关于毕业设计-基于机器视觉道路视频车道线检测识别的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 毕业设计选题:基于机器学习的票据表格分割识别系统 人工智能 YOLO 计算机视觉

    毕业设计选题:基于机器学习的票据表格分割识别系统 人工智能 YOLO 计算机视觉

    目录 前言 课题背景和意义 实现技术思路 一、 算法理论基础 1.1 卷积神经网络 1.3 EM算法 二、实验及结果分析 2.1 数据处理 2.2 模型训练 3.2 结果分析 最后     📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗

    2024年02月22日
    浏览(50)
  • 毕业设计:基于机器学习的高压线障碍物识别系统 人工智能 YOLO 计算机视觉

    毕业设计:基于机器学习的高压线障碍物识别系统 人工智能 YOLO 计算机视觉

    目录 前言 课题背景和意义 实现技术思路 一、障碍物检测方法 1.1 障碍物识别算法 1.2 Adaboost算法 1.3 支持向量机 二、 数据集 三、实验及结果分析 3.1 实验环境搭建 3.2 模型训练 最后     📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学

    2024年02月21日
    浏览(8)
  • 基于计算机视觉,深度学习、机器学习,OpenCV,图像分割,目标检测卷积神经网络计算机毕业设计选题题目大全选题指导

    随着深度学习、机器学习和神经网络技术的快速发展,计算机视觉领域的应用变得越来越广泛和有趣。本毕业设计旨在探索这一领域的前沿技术,将深度学习模型、神经网络架构、OpenCV图像处理工具,以及卷积神经网络(CNN)的强大能力结合起来,以解决实际图像处理问题。

    2024年02月08日
    浏览(47)
  • 毕业设计项目——基于QT4+Opencv开发的道路偏移检测与预警系统

    完整项目地址:https://download.csdn.net/download/lijunhcn/88453342 基于QT4+Opencv的道路道路偏移检测与预警系统 开发环境:Ubuntu14.04+QT4.8.5+Opencv2.4.8 已经实现的功能: 道路偏移检测 道路偏移预警 串口读取外部传感器数据 部分源码展示:

    2024年02月03日
    浏览(12)
  • 【毕业设计】基于深度学习的道路裂缝识别算法系统 python 卷积神经网络 人工智能

    【毕业设计】基于深度学习的道路裂缝识别算法系统 python 卷积神经网络 人工智能

    目录  前言 设计思路 一、课题背景与意义 二、算法理论原理 2.1 卷积神经网络 2.1 YOLOv5算法 三、道路裂缝检测的实现 3.1 数据集 3.2 实验环境及参数设置  3.2 实验及结果分析 实现效果图样例 最后        📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后

    2024年03月24日
    浏览(14)
  • 【毕业设计】python 机器视觉 车牌识别 - opencv 深度学习 机器学习

    【毕业设计】python 机器视觉 车牌识别 - opencv 深度学习 机器学习

    🚩 基于python 机器视觉 的车牌识别系统 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:2分 🧿 选题指导, 项目分享: https://gitee.com/dancheng-senior/project-sharing-1/blob/master/%E6%AF%95%E8%AE%BE%E6%8C%87%E5%AF%BC/README.md 车牌识别其实是个经典的机器视觉任

    2024年02月06日
    浏览(12)
  • 机器视觉毕业设计 python车牌识别系统 - opencv 深度学习 机器学习

    机器视觉毕业设计 python车牌识别系统 - opencv 深度学习 机器学习

    # 1 前言 🚩 基于python 机器视觉 的车牌识别系统 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:2分 车牌识别其实是个经典的机器视觉任务了,通过图像处理技术检测、定位、识别车牌上的字符,实现计算机对车牌的智能管理功能。如今在

    2024年02月13日
    浏览(14)
  • 计算机毕业设计选题-最新最全机器视觉 计算机视觉选题推荐汇总

      大四是整个大学期间最忙碌的时光,一边要忙着准备考研、考公、考教资或者实习为毕业后面临的升学就业做准备,一边要为毕业设计耗费大量精力。学长给大家整理了机器视觉,计算机视觉不同方向最新精选选题,如对选题有任何疑问,都可以问学长哦! 以下是学长精心整

    2024年02月06日
    浏览(20)
  • 毕业设计 单片机与OpenMV机器视觉目标跟踪系统

    毕业设计 单片机与OpenMV机器视觉目标跟踪系统

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月03日
    浏览(11)
  • 【毕业设计】深度学习花卉识别系统 - 卷积神经网络 机器视觉

    【毕业设计】深度学习花卉识别系统 - 卷积神经网络 机器视觉

    🔥 Hi,大家好,这里是丹成学长的毕设系列文章! 🔥 对毕设有任何疑问都可以问学长哦! 这两年开始,各个学校对毕设的要求越来越高,难度也越来越大… 毕业设计耗费时间,耗费精力,甚至有些题目即使是专业的老师或者硕士生也需要很长时间,所以一旦发现问题,一定

    2024年02月05日
    浏览(82)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包