机器学习实战:Python基于SVD奇异值分解进行矩阵分解(八)

这篇具有很好参考价值的文章主要介绍了机器学习实战:Python基于SVD奇异值分解进行矩阵分解(八)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1 前言

1.1 奇异值分解

奇异值分解(Singular Value Decomposition,SVD)是一种重要的矩阵分解技术,它可以将一个矩阵分解为三个矩阵的乘积,分别为左奇异矩阵、奇异值矩阵和右奇异矩阵。SVD 的原理可以描述如下:

对于任意 m × n m \times n m×n 的矩阵 A A A,它的 SVD 分解为:

A = U $\sigma $ V T V^T VT

其中 A 是待分解的矩阵,U 是一个正交矩阵,$\sigma $ 是一个对角矩阵 V T V^T VTV 的转置。这个公式表示将 A 分解为三个矩阵的乘积,其中 U 和 V T V^T VT 表示矩阵 A 在左右两个方向上的正交基,$\sigma $ 表示每个基向量上的缩放因子,称为奇异值。

优点:

  • SVD 可以处理非方阵和稠密矩阵,这是其他矩阵分解方法(如LU分解和QR分解)无法处理的情况。
  • SVD 可以有效地进行降维,保留最重要的特征,从而可以在不影响模型性能的情况下减少特征数量。
  • SVD 分解得到的三个矩阵可以分别表示原矩阵在行空间、列空间和主对角线方向的信息,有助于对矩阵的性质和特征进行分析。

缺点:

  • SVD 运算时间复杂度较高,在处理大型矩阵时需要大量的计算资源。
  • SVD 分解后得到的矩阵可能存在精度问题,特别是对于非常接近零的奇异值。
  • SVD 分解的结果可能存在多解的情况,这需要根据实际问题和领域知识进行进一步的分析和处理。

1.2 奇异值分解的应用

奇异值分解是一种重要的矩阵分解方法,具有广泛的应用。以下是一些常见的应用场景:

  1. 数据降维:SVD 可以对高维数据进行降维处理,减少数据的冗余信息和噪声,提取最重要的特征。这种方法在数据挖掘、机器学习等领域广泛应用。

  2. 图像处理:SVD 可以将图像矩阵分解成三个矩阵,其中一个矩阵可以表示图像的主要特征,从而可以实现图像压缩、降噪等处理。此外,SVD 在图像水印、图像检索等方面也有重要应用。

  3. 推荐系统:SVD 可以将用户-物品评分矩阵分解成三个矩阵,其中一个矩阵可以表示用户的偏好特征,另一个矩阵可以表示物品的属性特征。这种方法在推荐系统中广泛应用,例如Netflix竞赛中的著名算法。

  4. 自然语言处理:SVD 可以对文本矩阵进行分解,提取文本的重要主题和特征,用于文本分类、文本聚类、文本推荐等任务。

  5. 信号处理:SVD 可以将信号分解成一系列奇异值,这些奇异值表示信号的能量和频率分布等信息,从而可以实现信号分离、降噪、压缩等处理。

2 简单计算SVD

2.1 NumPy 计算 SVD

在numpy.linalg中使用 SVD 获得完整的矩阵 U、S 和 V。请注意,S 是一个对角矩阵,这意味着它的大部分条目都是零。这称为稀疏矩阵。为了节省空间,S 返回为奇异值的一维数组而不是完整的二维矩阵

import numpy as np
from numpy.linalg import svd

# 将矩阵定义为二维numpy数组
A = np.array([[4, 0], [3, -5]])

U, S, VT = svd(A)

print("Left Singular Vectors:")
print(U)
print("Singular Values:") 
print(np.diag(S))
print("Right Singular Vectors:") 
print(VT)
print(U @ np.diag(S) @ VT)

机器学习实战:Python基于SVD奇异值分解进行矩阵分解(八)

2.2 scikit-learn 计算截断 SVD

一般情况下用sklearn.decomposition中的TruncatedSVD修剪我们的矩阵。可以将输出中所需的特征数指定为n_components参数。n_components 应严格小于输入矩阵中的特征数:

import numpy as np
from sklearn.decomposition import TruncatedSVD

A = np.array([[-1, 2, 0], [2, 0, -2], [0, -2, 1]])
print("Original Matrix:")
print(A)

svd =  TruncatedSVD(n_components = 2)
A_transf = svd.fit_transform(A)

print("Singular values:")
print(svd.singular_values_)

print("Transformed Matrix after reducing to 2 features:")
print(A_transf)

机器学习实战:Python基于SVD奇异值分解进行矩阵分解(八)

2.3 scikit-learn 计算随机 SVD

随机 SVD 给出与截断 SVD 相同的结果,并且计算时间更快。截断 SVD 使用精确求解器 ARPACK,而随机 SVD 使用近似技术。

import numpy as np
from sklearn.utils.extmath import randomized_svd

A = np.array([[-1, 2, 0], [2, 0, -2], [0, -2, 1]])
u, s, vt = randomized_svd(A, n_components = 2)

print("Left Singular Vectors:")
print(u)

print("Singular Values:") 
print(np.diag(s))

print("Right Singular Vectors:") 
print(vt)

机器学习实战:Python基于SVD奇异值分解进行矩阵分解(八)

3 demo数据演示

3.1 导入函数

加载cv2需要下载一下,在shell中下载用以下命令,在jupyter中运行记得加,这里为了齐全下载了opencv-contrib-python

pip install opencv-python   (如果只用主模块,使用这个命令安装)
pip install opencv-contrib-python (如果需要用主模块和contrib模块,使用这个命令安装)
# !pip install opencv-contrib-python
import numpy as np
import matplotlib.pyplot as plt
import cv2

3.2 导入数据

构建一个简单矩阵

A = np.ones((6, 6))
A[:,:2] = A[:,:2]*2
A[:,2:4] = A[:,2:4]*3
A[:,4:] = A[:,4:]*4
print(A)

# 定义颜色
our_map = 'hot'
#our_map = 'gray'

# 构建完整矩阵
U, S, VT = np.linalg.svd(A)
S = np.diag(S)

3.3 计算SVD

写一个一个构建绘制矩阵函数的def,类似于R的function,定义为draw_svd

def draw_svd(A,U, S, VT, our_map):
  plt.subplot(221 )
  plt.title('Original matrix')
  plt.imshow(A, cmap =our_map)
  plt.axis('off')
  plt.subplot(222)
  plt.title('U  matrix')
  plt.imshow(U, cmap =our_map)
  plt.axis('off')
  plt.subplot(223)
  plt.title('Sigma matrix')
  plt.imshow(S, cmap =our_map)
  plt.axis('off')
  plt.subplot(224)
  plt.title('V matrix')
  plt.imshow(VT, cmap =our_map)
  plt.axis('off')

如果对角线 sigma 值太小,出于数值/美学目的,我们将删除相应的非常小的 (u ), (v ) 元素。例如,如果一个奇异值是 1e-08 它不会影响重建,所以我们将这些小值设置为零:

def truncate_u_v(S, U, VT):
  threshold = 0.001
  s = np.diag(S)
  index = s < threshold

  U[:,index] = 0
  VT[index,:]=0
  return U, VT
U, VT = truncate_u_v(S, U, VT)
draw_svd(A, U, S, VT, our_map) 

机器学习实战:Python基于SVD奇异值分解进行矩阵分解(八)

这里用秩r近似值(这里r = 1),也称rank-1 近似计算有多少个求和项:

r = 1
A0_r = np.matmul(U[:,:r] , S[:r,:r]) 
A0_r = np.matmul (A0_r , VT[:r,:])
plt.imshow(A0_r, cmap =  our_map)
plt.axis('off')

机器学习实战:Python基于SVD奇异值分解进行矩阵分解(八)

对于这个例子,我们之前已经看到标志可以表示为 rank-1 近似值。在 ($\sigma $) 矩阵中,第一个上部元素是唯一的非零元素。此外,请注意,矩阵 (U ) 和 (V ) 被归一化,因此它们的 L2 范数等于 1。(V ) 矩阵有一行,其元素决定了不同的颜色值。

求解前面部分的 ($2\times2 $) 矩阵的数值示例。稍后将 Python 获得的值与我们已经计算出的值进行比较:

A = [[1, 0], [1, 1]]
U, S, VT = np.linalg.svd(A)
S = np.diag(S)

print(f"U {U}\nS {S}\nVT {VT}")

机器学习实战:Python基于SVD奇异值分解进行矩阵分解(八)

4 讨论

SVD 正在将我们的矩阵 $(A ) 分解为一组向量 分解为一组向量 分解为一组向量 (v $) 和 $(u $),以及一个对角矩阵。将有用于乘法的列向量、行向量和标量。这实际上是奇异值分解,将矩阵分解为项:

如果我们有一个 rank = ($2 $),我们可以将矩阵分解为:

u 1 v 1 T + u 2 v 2 T u_{1}v_{1}^{T}+u_{2}v_{2}^{T} u1v1T+u2v2T

如果 rank = ($1 $),结果应该是这样的:

u 1 v 1 T u_{1}v_{1}^{T} u1v1T

稍微复杂一点的分解是添加标量 (($\sigma $) – σ \sigma σ),这将存储在对角矩阵中。我们对 rank-($2 $) 矩阵 ($2 $) 的基本分解:

A = σ 1 u 1 v 1 T + σ 2 u 2 v 2 T A= \sigma _{1} u_{1}v_{1}^{T}+\sigma _{2} u_{2}v_{2}^{T} A=σ1u1v1T+σ2u2v2T

这里很明显的一件事是,实际上我们可以将这些 σ \sigma σ 值视为加权系数。稍后,我们将它们存储在对角矩阵中。

SVD最常见的应用还是关于图像的,和笔者研究方向数据分析重合度不算高,后者只需要针对数据进行简单的降维即可,但对于图像压缩图像恢复
特征量谱聚类视频背景去除等对于我这个学生物统计的真的裂开,

SVD这一部分实在难啃,建议阅读原文细品:文章来源地址https://www.toymoban.com/news/detail-430441.html

  1. https://datahacker.rs/009-the-singular-value-decompositionsvd-illustrated-in-python/
  2. https://scicoding.com/how-to-calculate-singular-value-decomposition-svd-in-python/

到了这里,关于机器学习实战:Python基于SVD奇异值分解进行矩阵分解(八)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Python实现矩阵奇异值分解(SVD)

    Python实现矩阵奇异值分解(SVD) 矩阵奇异值分解(Singular Value Decomposition, SVD)是一种重要的矩阵分解方法,可以将一个矩阵分解成三个矩阵的乘积,即 A = U Σ V T A=USigma V^{T} A = U Σ

    2024年02月10日
    浏览(15)
  • 时序分解 | MATLAB实现基于SVD奇异值分解的信号分解分量可视化

    效果一览 基本介绍 SVD分解重构算法,MATLAB程序,奇异值分解 (Singular Value Decomposition)是一种常见的矩阵分解方法,用于将矩阵分解成三个矩阵的乘积。在信号处理中,SVD 可以用于特征提取、信号降维、图像压缩等方面。SVD 的一个重要应用是主成分分析 (PCA),可以用于提取数

    2024年02月11日
    浏览(17)
  • 奇异值分解(SVD)和图像压缩

    在本文中,我将尝试解释 SVD 背后的数学及其几何意义,还有它在数据科学中的最常见的用法,图像压缩。 奇异值分解是一种常见的线性代数技术,可以将任意形状的矩阵分解成三个部分的乘积:U、S、V。原矩阵A可以表示为: 具体来说,A矩阵中的奇异值就是Sigma矩阵中的对

    2023年04月10日
    浏览(19)
  • 奇异值分解(SVD)和np.linalg.svd()函数用法

            奇异值分解是一种十分重要但又难以理解的矩阵处理技术,在机器学习中是最重要的分解没有之一的存在。那么,奇异值分解到底是在干什么呢?         矩阵 A 表示的是高维数据,通常情况下高维数据分布并不是雨露均沾的,而往往是厚此薄彼,集中分布

    2023年04月08日
    浏览(51)
  • 数值线性代数:奇异值分解SVD

    本文记录计算矩阵奇异值分解SVD的原理与流程。 注1:限于研究水平,分析难免不当,欢迎批评指正。 设列满秩矩阵,若的特征值为,则称为矩阵的奇异值。 设,则存在正交矩阵与,使得 其中,,,即为矩阵的奇异值。 考虑下述两种情形: 情形1: 其中, 由此可以看出,

    2024年02月15日
    浏览(14)
  • 矩阵篇(五)-- 特征值分解(EVD)和奇异值分解(SVD)

            设 A n × n A_{n times n} A n × n ​ 有 n n n 个线性无关的特征向量 x 1 , … , x n boldsymbol{x}_{1}, ldots, boldsymbol{x}_{n} x 1 ​ , … , x n ​ ,对应特征值分别为 λ 1 , … , λ n lambda_{1}, ldots, lambda_{n} λ 1 ​ , … , λ n ​ A [ x 1 ⋯ x n ] = [ λ 1 x 1 ⋯ λ n x n ] Aleft[begin{array}{lll

    2024年02月08日
    浏览(20)
  • 奇异值分解SVD(singular value decomposition)

    SVD是一个很有用的矩阵因子化方法。 SVD提出的目的:任何一个 m × n mtimes n m × n 的矩阵都可以当作一个超椭圆(高维空间的椭圆),可以把它们当作单位球体S的像。 一个超椭圆可以通过将单位球型在正交方向 u 1 , u 2 , . . . , u m mathbf{u_1},mathbf{u_2},...,mathbf{u_m} u 1 ​ , u 2 ​

    2024年02月03日
    浏览(11)
  • SVD,奇异值分解的计算步骤以及实例讲解

           奇异值分解 (singular value decomposition,SVD),已经成为矩阵计算中最有用和最有效的工具之一,并且在最小二乘问题、最优化、统计分析、信号与图像处理、系统理论与控制等领域得到广泛应用。         首先我们都知道方阵是可以特征值分解的,那么问题来了,如果矩

    2024年02月04日
    浏览(15)
  • 【语音隐写】基于matlab奇异值分解SVD音频水印嵌入加噪滤波(检验鲁棒性含误码率)【含Matlab源码 3895期】

    ✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。 🍎个人主页:海神之光 🏆代码获取方式: 海神之光Matlab王者学习之路—代码获取方式 ⛳️座右铭:行百里者,半于九十。 更多Matlab仿真内容点击👇 Matlab图像处理(进阶版) 路径规划

    2024年02月21日
    浏览(16)
  • 奇异值分解(SVD)原理与在降维中的应用

    奇异值分解(Singular Value Decomposition,以下简称SVD)是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域。是很多机器学习算法的基石。本文就对SVD的原理做一个总结,并讨论在在PCA降维算法中是如何运用运

    2023年04月25日
    浏览(21)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包