yolov5-7.0简单训练教程

这篇具有很好参考价值的文章主要介绍了yolov5-7.0简单训练教程。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


前言

yolov5-7.0简单训练教程。


一、下载yolov5-7.0代码

可以自己去git上下载,没有梯子的点这里去百度网盘下载资源

二、使用步骤

1.下载资源包

点击下载资源包:objectdetection_script-master

yolov5-7.0简单训练教程
将下载到的脚本目录中的yolo文件夹内的文件复制到yolov5-7.0的根目录下。
yolov5-7.0简单训练教程
Annotations:存放VOC格式的标注的XML文件
JPEGImages:存放数据集里的图片,图片后缀需要一致,比如都是jpg或者png等等,不支持混合的图片后缀格式,比如一些是jpg,一些是png。
txt:存放yolo格式的标注文件。(运行xml2txt.py)

2.运行xml2txt.py

运行xml2txt.py,在这个文件中其会把Annotations中的XML格式标注文件转换到txt中的yolo格式标注文件。其中xml2txt.py中的postfix参数是JPEGImages的图片后缀,修改成图片的后缀即可,默认为jpg。比如我的图片都是png后缀的,需要把postfix修改为png即可。
其中运行这个文件的时候,输出信息会输出你的数据集的类别,你需要把类别列表复制到data.yaml中的names中,并且修改nc为你的类别数,也就是names中类别个数。
yolov5-7.0简单训练教程

3.运行split_data.py

这个文件是划分训练、验证、测试集。其中支持修改val_size验证集比例和test_size测试集比例,可以在split_data.py中找到对应的参数进行修改,然后postfix参数也是你的图片数据集后缀格式,默认为jpg,如果你的图片后缀不是jpg结尾的话,需要修改一下这个参数。

4.开始训练

点击根目录下的train.py,调整相应的配置,就可以开始训练了。


总结

以上就是yolov5-7.0的简单训练教程啦,希望大家都可以成功。文章来源地址https://www.toymoban.com/news/detail-431810.html

到了这里,关于yolov5-7.0简单训练教程的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • yolov5训练部署全链路教程

    yolov5训练部署全链路教程

    YOLOv5 模型是 Ultralytics 公司于 2020 年 6 月 9 日公开发布的。YOLOv5 模型是基于 YOLOv3 模型基础上改进而来的,有 YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x 四个模型。YOLOv5 相比YOLOv4 而言,在检测平均精度降低不多的基础上,具有均值权重文件更小,训练时间和推理速度更短的特点。YOLOv5 的

    2024年02月11日
    浏览(13)
  • 使用yolov5训练visdrone2019数据集-详细教程

    使用yolov5训练visdrone2019数据集-详细教程

    首先,新建一个文件夹,命名为yolov5,在yolov5文件夹下新建datasets文件夹 下载yolov5官方源码 链接如下:https://github.com/ultralytics/yolov5 下载源码并解压后产生一个yolov5-master文件夹,将其移动到yolov5文件夹下 下载预训练权重 此外,还需下载预训练权重,根据自己需要下载相应的

    2024年02月06日
    浏览(21)
  • 博客3:YOLOv5车牌识别实战教程:模型训练与评估

    博客3:YOLOv5车牌识别实战教程:模型训练与评估

    摘要:本篇博客将详细介绍如何使用YOLOv5进行车牌识别模型的训练与评估。我们将搭建训练环境、准备数据、配置模型参数、启动训练过程,以及使用验证集评估模型性能。 车牌识别视频 正文: 3.1 搭建训练环境   首先,我们需要搭建YOLOv5的训练环境。YOLOv5使用PyTorch框架,

    2024年02月04日
    浏览(10)
  • YOLOv5-7.0添加解耦头

    YOLOv5-7.0添加解耦头

    Decoupled Head是由YOLOX提出的用来替代YOLO Head,可以用来提升目标检测的精度。那么为什么解耦头可以提升检测效果呢? 在阅读YOLOX论文时,找到了两篇引用的论文,并加以阅读。 第一篇文献是Song等人在CVPR2020发表的“Revisiting the Sibling Head in Object Detector”。 这篇论文中提出了,

    2024年02月09日
    浏览(9)
  • yolov5-7.0 添加BiFPN

    yolov5-7.0 添加BiFPN

    BiFPN是目标检测中神经网络架构设计的选择之一,为了优化目标检测性能而提出。主要用来进行多尺度特征融合,对神经网络性能进行优化。来自EfficientDet: Scalable and Efficient Object Detection这篇论文。 在这篇论文中,作者主要贡献如下: 首先,提出了一种 加权双向特征金字塔网

    2024年02月17日
    浏览(12)
  • YOLOv5系列全新升级——yolov5-v7.0实时实例分割全面集成

    YOLOv5系列全新升级——yolov5-v7.0实时实例分割全面集成

    自从YOLOv5诞生依赖,社区就很活动,官方的更新频度也很高,检测系列一路迭代升级,集成融合了各种新颖的技术和tricks,目前最新已经更新到了v6.1版本,在我之前的博客里面也有详细教程讲解,感兴趣的话可以自行移步,文章如下: 《基于自建数据集【海底生物检测】使

    2024年02月01日
    浏览(14)
  • YOLOv5-7.0添加BottleNet transformer

    YOLOv5-7.0添加BottleNet transformer

    YOLOv5主干特征提取网络为CNN网络,CNN具有平移不变性和局部性,缺乏全局建模长距离建模的能力,引入自然语言领域的Transformer可以形成CNN+TransFormer架构,充分结合两者的优点,提高目标检测效果。 论文地址:https://arxiv.org/abs/2101.11605 BoTNet是一种简单但功能强大的主干网络,

    2024年02月11日
    浏览(10)
  • 【目标检测】YOLOv5-7.0:加入实例分割

    【目标检测】YOLOv5-7.0:加入实例分割

    前段时间,YOLOv5推出7.0版本,主要更新点是在目标检测的同时引入了实例分割。 目前,YOLOv5团队已经转向了YOLOv8的更新,因此,7.0版本大概率是YOLOv5的最终稳定版。 官方公告中给出了YOLOv5-7.0的更新要点: 推出了基于coco-seg的实例分割预训练模型 支持Paddle Paddle模型导出 自动

    2024年02月11日
    浏览(12)
  • 【yolov5 安装教程】(入门篇)避免踩雷保姆级教程 在m1芯片下 使用yolov5本地训练自己的数据集 ——mac m1

    【yolov5 安装教程】(入门篇)避免踩雷保姆级教程 在m1芯片下 使用yolov5本地训练自己的数据集 ——mac m1

    ​​​​​​​ 目录 一、简介 配置 环境准备 二、环境配置 1.安装anaconda 2.安装TensorFlow 3.安装pytorch 4.pyqt5安装  5.安装labelimg 6.下载yolov5 7.pycharm安装 三、使用labelimg标记图片 1.准备工作 2.标记图片 四、 划分数据集以及配置文件修改 1. 划分训练集、验证集、测试集 2.XML格式转

    2024年02月05日
    浏览(12)
  • yolov5-v7.0实例分割快速体验

    yolov5-v7.0实例分割快速体验

    🚀 yolov5-v7.0 版本正式发布,本次更新的 v7.0 则是全面的大版本升级,最主要的功能就是全面集成支持了实例分割,yolov5已经集成检测、分类、分割任务。 前面几篇文章已经介绍过关于Yolov5的一些方面 yolov5目标检测:https://blog.csdn.net/qq_45066628/article/details/129470290?spm=1001.2014.30

    2024年02月09日
    浏览(10)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包