es笔记五之term-level的查询操作

这篇具有很好参考价值的文章主要介绍了es笔记五之term-level的查询操作。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

本文首发于公众号:Hunter后端
原文链接:es笔记五之term-level的查询操作

官方文档上写的是 term-level queries,表义为基于准确值的对文档的查询,可以理解为对 keyword 类型或者 text 类型分词为 keyword 的字段进行 term 形式的精确查找。

以下是本篇笔记目录:

  1. 是否存在值
  2. 前缀搜索
  3. 大小于操作
  4. term 查询
  5. terms 查询
  6. wildcard 查询

1、是否存在值

exists 查询某个字段是否存在值。

还是使用上篇笔记讲的 exam 这个 index,我们创建一条数据,只给定 name 的值,那么 address 的值就 null,或者说查询返回的数据就没有这个字段了。

PUT /exam/_doc/12
{
    "name" : "test"
}

然后我们查询 address 字段有值的数据:

GET /exam/_search
{
  "query": {
    "exists": {
      "field": "address"
    }
  }
}

就可以发现返回的数据中没有我们创建的这条数据,或者我们取反操作,查询 address 字段没有值的数据:

GET /exam/_search
{
  "query": {
    "bool": {
      "must_not": [
        {"exists": {"field": "address"}}
      ]
    }
  }
}

2、前缀搜索

对于我们在前面创建的这条数据:

PUT /exam/_doc/16
{
    "name" : "张三丰",
    "address": "一个苹果"
}

如果是 name 字段,因为它是一个 keyword 类型,所以它是一个整体不会被分词处理,我们可以搜索 name 的值为 '张', '张三' 和 '张三丰' 都可以搜索到。

GET /exam/_search
{
  "query": {
    "prefix": {
      "name": {
        "value": "张"
      }
    }
  }
}

但是对于 address 字段,发现是可以搜索到 '一','一个' 和 '苹果',但是搜索 '一个苹',或者 '一个苹果' 是搜不到结果的。

GET /exam/_search
{
  "query": {
    "prefix": {
      "address": {
        "value": "一个苹"
      }
    }
  }
}

我们可以看一下 '一个苹果' 的分词结果:

GET /exam/_doc/16/_termvectors?fields=address

可以发现可以搜索到的词都在以分词结果的开头或者全部,但是 '一个苹' 是没有分词结果以此为开头的。

所以这里我们的搜索操作是基于 address 字段的分词结果列表来查询的。

如果想要搜索到从 '一' 开始到结尾之间任意地点截断的数据,我们就需要将 address 字段作为一个整体来搜索,那就是加上 .keyword 来操作。

GET /exam/_search
{
  "query": {
    "prefix": {
      "address.keyword": {
        "value": "一个苹"
      }
    }
  }
}

3、大小于操作

前面介绍了 gt, gte, lt, lte 的操作是在 bool 下的 filter 里操作,这里我们可以直接放到 query 下:

GET /bank/_search
{
  "query": {
    "range": {
      "age": {
        "gte": 10,
        "lte": 20
      }
    }
  }
}

4、term 查询

前面介绍过 term 查询是一种精确查询,但是官方文档提醒我们应该尽量避免对 text 字段使用 term 查询,因为 text 类型的数据在写入的时候会被分词,通过 term 查询我们可能搜索不到想要的查询的数据。同时建议我们查询 text 字段应当使用 match 操作。

我们使用官方文档提供的一个示例来说明为什么应该尽量避免使用 term 查询来查询 text 字段,其实前面我们介绍过相关的示例,这里单独拿出来做一下说明。

还是使用我们前面用过的索引 exam,我们来写入一条数据:

PUT /exam/_doc/18
{
  "address": "quick brown foxes"
}

然后我们想要搜索 'quick brown foxes' 这个字符串,使用下面的操作:

GET /exam/_search
{
  "query": {
    "term": {
      "address": {
        "value": "quick brown foxes"
      }
    }
  }
}

这个肯定是搜索不到的,因为这个字符串在写入的时候已经被分词处理了,而 term 是一个精确查找,相当于搜索一整个字符串,这就肯定搜索不到了。

但是我们可以使用 match,match 操作会在搜索前先对搜索的字符串进行分词处理,然后进行匹配操作,所以使用下面的操作是可以搜索到数据的:

GET /exam/_search
{
  "query": {
    "match": {
      "address": "quick brown foxes"
    }
  }
}

前面还介绍过,如果想要搜索一整个 address 的值为我们搜索的字符串内容,可以使用 address.keyword:

GET /exam/_search
{
  "query": {
    "term": {
      "address.keyword": "quick brown foxes"
    }
  }
}

5、terms 查询

如果想要同时搜索多个精确字段值,比如搜索 "quick" 和 "苹果",就可以使用 terms:

GET /exam/_search
{
  "query": {
    "terms": {
      "address": ["quick", "苹果"]
    }
  }
}

6、wildcard 查询

wildcard 是通配符的意思,这里的用法有点类似于前缀的操作,都是通过符号来实现更为随意的匹配。

这里有两个通配符,一个是 *,一个是 ?

* 的作用是 0 到 n 个字符长度

比如我搜索 qui* 就可以查到 quick 的数据:

GET /exam/_search
{
  "query": {
    "wildcard": {
      "address": {
        "value": "qui*"
      }
    }
  }
}

? 的作用是匹配任意单个字符,比如我们搜索 qui?k,也可以查询到这条数据:

GET /exam/_search
{
  "query": {
    "wildcard": {
      "address": {
        "value": "qui?k"
      }
    }
  }
}

如果想获取更多后端相关文章,可扫码关注阅读:
es笔记五之term-level的查询操作文章来源地址https://www.toymoban.com/news/detail-456596.html

到了这里,关于es笔记五之term-level的查询操作的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 使用ES Term query查询时一定要注意的地方

    使用ES Term query查询时一定要注意的地方

    使用 Term query 可以根据精确值查找相关文档数据,不过 Term query 查询与 Match query 查询还是有区别的,有时候你会发现用 Match query 可以查到,换成 Term query 却不行,本文整理一些使用 Term query 容易出错的点供参考。 如果你查看 Term query 的官方文档,你就会发现,官网首先对

    2024年02月11日
    浏览(9)
  • ElasticSearch系列 - SpringBoot整合ES:多个精确值查询 terms

    ElasticSearch - SpringBoot整合ES:多个精确值查询 terms 01. ElasticSearch terms 查询支持的数据类型 在Elasticsearch中,terms查询支持多种数据类型,包括: 字符串类型:可以将多个字符串值作为数组传递给terms查询,以匹配包含任何一个指定字符串值的文档。 数值类型:可以将多个数值作

    2024年02月16日
    浏览(20)
  • 【ES】es查询term、match、match_phrase、mast_not、mast...

    keyword:不分词 非keyword:分词 对属性名.keyword,就是全值匹配。如果查询的属性是text,就会匹配分词。 term:查询的入参,不会分词。 terms:查询的入参,不会分词。 match:分词匹配 match_phrase:短语匹配,一个slop属性,可以使短语中的词,调换顺序 match_phrase_prefix:分词前缀

    2024年02月22日
    浏览(11)
  • 【SpringBoot笔记28】SpringBoot集成ES数据库之操作doc文档(创建、更新、删除、查询)

    这篇文章,主要介绍SpringBoot集成ES数据库之操作doc文档(创建、更新、删除、查询)。 目录 一、SpringBoot操作ES文档数据 1.1、创建文档 1.2、更新文档 1.3、删除文档

    2024年02月08日
    浏览(18)
  • Elasticsearch 中的 term、terms 和 match 查询

    目录 term 查询 terms 查询 match 查询 注意事项 结论    Elasticsearch 提供了多种查询类型,用于不同的搜索需求。 term 、 terms 和 match 是其中最常用的一些查询类型。下面分别介绍每种查询类型的用法和特点。   term 查询用于精确值匹配。它通常用于(keyword)类型的字段,

    2024年04月14日
    浏览(16)
  • celery笔记五之消息队列的介绍

    celery笔记五之消息队列的介绍

    本文首发于公众号:Hunter后端 原文链接:celery笔记五之消息队列的介绍 前面我们介绍过 task 的处理方式,将 task 发送到队列 queue,然后 worker 从 queue 中一个个的获取 task 进行处理。 task 的队列 queue 可以是多个,处理 task 的 worker 也可以是多个,worker 可以处理任意 queue 的 t

    2024年02月09日
    浏览(11)
  • Django笔记三十五之admin后台界面介绍

    Django笔记三十五之admin后台界面介绍

    本文首发于公众号:Hunter后端 原文链接:Django笔记三十五之admin后台界面介绍 这一篇介绍一下 Django 的后台界面使用。 Django 自带了一套后台管理界面,可用于我们直接操作数据库数据,本篇笔记目录如下: 创建后台账号以及登录操作 注册后台显示的数据表 列表字段的显示

    2024年02月02日
    浏览(12)
  • elasticsearch term & match 查询

    运行结果: 查询结果: match_all 的值为空,表示没有查询条件,那就是查询全部。就像 select * from table_name 一样。 查询结果: match 查询时散列映射,包含了我们希望搜索的字段和字符串,即只要文档中有我们希望的那个,但也会带来一些问题。 es 会将文档中的内容进

    2023年04月19日
    浏览(16)
  • ElasticSearch中结构化查询(term、terms、range、exists、match、bool)

    ElasticSearch中结构化查询(term、terms、range、exists、match、bool)

            term 主要用于精确匹配哪些值,比如数字,日期,布尔值或 not_analyzed 的字符串(未经分析的文本数据类型): 当前数据库中的数据:         terms 跟 term 相似,但 terms 允许指定多个匹配条件。 如果某个字段指定了多个值,那么文档需要一起去做匹配:      

    2024年02月05日
    浏览(15)
  • Django笔记二十五之数据库函数之日期函数

    Django笔记二十五之数据库函数之日期函数

    本文首发于公众号:Hunter后端 原文链接:Django笔记二十五之数据库函数之日期函数 日期函数主要介绍两个大类,Extract() 和 Trunc() Extract() 函数作用是提取日期,比如我们可以提取一个日期字段的年份,月份,日等数据 Trunc() 的作用则是截取,比如 2022-06-18 12:12:12 ,我们可以根

    2023年04月19日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包