AI五大神经网络模型

这篇具有很好参考价值的文章主要介绍了AI五大神经网络模型。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1.多层感知器

多层感知器(MLP)是一类前馈人工神经网络。感知器这个术语具体是指单个神经元模型,它是大型神经网络的前体。
MLP包括节点的三个主要层:输入层、隐藏层和输出层。在隐藏层和输出层中,每个节点都被视为使用非线性激活函数的神经元。MLP使用一种称为反向传播的监督式学习技术进行训练。初始化神经网络时,为每个神经元设置权重。反向传播有助于调整神经元权重,以获得更接近预期的输出。
对于涉及表格数据集、分类预测问题和回归预测问题的项目,MLP最理想。

2.卷积神经网络

卷积神经网络(CNN)模型处理具有网格图案(比如图像)的数据。它旨在自动学习特征的空间层次结构。CNN通常包括三种类型的层:卷积层、池化层和完全连接的层。
卷积层和池化层执行特征提取任务,这些提取的特征由完全连接的层映射到最终输出中。 CNN最适合图像处理。
图像识别、图像分类、对象检测和人脸识别是CNN的一些应用场景。

3.递归神经网络

在递归神经网络(RNN)中,前一步的输出将作为输入被反馈回到当前步骤。RNN中的隐藏层实现这种反馈系统。该隐藏状态可以存储有关序列中之前步骤的一些信息。
RNN中的“内存”可帮助模型记住已计算的所有信息。反过来,它使用这些同样的参数,以便每个输入生成输出,因而降低了参数的复杂性。
RNN是使用最广泛的神经网络类型之一,主要是由于RNN具有更强的学习能力,而且能够执行诸如学习手写或语言识别之类的复杂任务。RNN适用的其他一些领域包括预测问题、机器翻译、视频标记、文本摘要,甚至音乐创作。

4. 深度信念网络

深度信念网络(DBN)使用概率和无监督学习来生成输出。DBN由二进制潜在变量、无向层和有向层组成。DBN有别于其他模型,原因是每一层都按顺序进行调节,每一层都学习整个输入。
在DBN中,每个子网的隐藏层都是下一个的可见层。这种组合可以实现快速的逐层无监督训练过程:对比差异应用于每个子网,从最低可见层开始。贪婪的学习算法用于训练DBN。学习系统每次取一层。因此,每一层收到不同版本的数据,每一层都使用前一层的输出作为其输入。
DBN主要应用于图像识别、视频识别和运动捕获数据。比如公园视频摄像头捕获视频头像

5.受限玻尔兹曼机

玻尔兹曼机(RBM)是一种生成式非确定性(随机)神经网络,可学习其输入集的概率分布。RBM是组成深度信念网络构建模块的浅度两层神经网络。RBM中的第一层名为可见层或输入层,第二层名为隐藏层。它由名为节点的类似神经元的单元组成;节点跨层相互连接,但不在同一层内。文章来源地址https://www.toymoban.com/news/detail-457231.html

到了这里,关于AI五大神经网络模型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 深度学习”和“多层神经网络”的区别

    深度学习”和“多层神经网络”的区别

    在讨论深度学习与多层神经网络之间的差异时,我们必须首先理解它们各自是什么以及它们在计算机科学和人工智能领域的角色。 深度学习是一种机器学习的子集,它使用了人工神经网络的架构。深度学习的核心思想是模拟人脑神经元的工作方式,以建立模型并学习数据的抽

    2024年02月02日
    浏览(8)
  • 【深度学习 | 感知器 & MLP(BP神经网络)】掌握感知的艺术: 感知器和MLP-BP如何革新神经网络

    【深度学习 | 感知器 & MLP(BP神经网络)】掌握感知的艺术: 感知器和MLP-BP如何革新神经网络

    🤵‍♂️ 个人主页: @AI_magician 📡主页地址: 作者简介:CSDN内容合伙人,全栈领域优质创作者。 👨‍💻景愿:旨在于能和更多的热爱计算机的伙伴一起成长!!🐱‍🏍 🙋‍♂️声明:本人目前大学就读于大二,研究兴趣方向人工智能硬件(虽然硬件还没开始玩,但一直

    2024年02月12日
    浏览(11)
  • 神经网络--感知机

    神经网络--感知机

    单层感知机原理 单层感知机:解决二分类问题,激活函数一般使用 sign函数 , 基于误分类点到超平面的距离总和 来构造损失函数,由损失函数推导出模型中损失函数对参数 w w w 和 b b b 的梯度,利用梯度下降法从而进行参数更新。 让+1代表A类,0代表B类 。 以下是原理示意图:

    2024年02月10日
    浏览(12)
  • MATLAB——感知神经网络学习程序

    学习目标:从学习第一个最简单的神经网络案例开启学习之路 感知器神经网络   用于点的分类 clear all; close all; P=[0 0 1 1;0 1 0 1];                         %输入向量 T=[0 1 1 1];                                 %目标向量 net=newp(minmax(P),1,\\\'hardlim\\\',\\\'learnp\\\');    %建立感知器神经

    2024年02月14日
    浏览(10)
  • 2023年9月数学建模博客:深度学习与多层神经网络

    目录 1. 深度学习简介 2. 多层神经网络基本原理 2.1 激活函数

    2024年02月07日
    浏览(12)
  • 基于BIM+AI的建筑能源优化模型【神经网络】

    基于BIM+AI的建筑能源优化模型【神经网络】

    推荐:用 NSDT设计器 快速搭建可编程3D场景。 AEC(建筑、工程、施工)行业的BIM 技术,允许在实际施工开始之前虚拟地建造建筑物; 这带来了许多有形和无形的好处:减少成本超支、更有效的协调、增强决策权等等。 对于一些公司来说,采用 BIM 是需要克服的一大障碍,许

    2024年02月14日
    浏览(14)
  • 【单层感知器】花语神经网络的原理解析

    【单层感知器】花语神经网络的原理解析

    神经网络感知器(Perceptron)是神经网络中最基础的单元,它的工作原理可以用一个通俗的比喻来解释。 假设有一个花园,花园里有各种各样的花,我们要通过花的特征来识别不同的花种。神经网络感知器就像是一个智能的花匠,它能够根据花的特征进行分类和识别。 感知器

    2024年01月24日
    浏览(16)
  • 【Python机器学习】实验11 神经网络-感知器

    【Python机器学习】实验11 神经网络-感知器

    1.感知机是根据输入实例的特征向量 x x x 对其进行二类分类的线性分类模型: f ( x ) = sign ⁡ ( w ⋅ x + b ) f(x)=operatorname{sign}(w cdot x+b) f ( x ) = sign ( w ⋅ x + b ) 感知机模型对应于输入空间(特征空间)中的分离超平面 w ⋅ x + b = 0 w cdot x+b=0 w ⋅ x + b = 0 。 2.感知机学习的策略

    2024年02月13日
    浏览(17)
  • AI 与控制:神经网络模型用于模型预测控制(Model Predictive Control)

    AI 与控制:神经网络模型用于模型预测控制(Model Predictive Control)

    最优控制理论处理的问题通常是找到一个满足容许控制的 u*,把它作用于系统(被控对象)ẋ(t)=f(x(t),u(t),t) 从而可以得到系统的状态轨迹 x(t),使得目标函数最优。对于轨迹跟踪问题,那目标函数就是使得这个轨迹在一定的时间范围[t0tf]内与我们期望的轨迹(目标)x*(t) 越近

    2024年02月04日
    浏览(13)
  • 深度学习基础知识-感知机+神经网络的学习

    深度学习基础知识-感知机+神经网络的学习

    参考书籍:(找不到资源可以后台私信我) 《深度学习入门:基于Python的理论与实现 (斋藤康毅)》 《Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition (Aurelien Geron [Géron, Aurélien])》 机器学习和深度学习的区别: Perceptron(感知机) 感知机就是一种接收多种输入信

    2023年04月26日
    浏览(11)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包