深度学习HashMap之手撕HashMap

这篇具有很好参考价值的文章主要介绍了深度学习HashMap之手撕HashMap。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

认识哈希表

HashMap其实是数据结构中的哈希表在Java里的实现。

哈希表本质

哈希表也叫散列表,我们先来看看哈希表的定义:

哈希表是根据关键码的值而直接进行访问的数据结构。

简单说来说,哈希表由两个要素构成:桶数组散列函数

桶数组

我们可能知道,有一类基础的数据结构线性表,而线性表又分两种,数组链表
哈希表数据结构里,存储元素的数据结构就是数组,数组里的每个单元都可以想象成一个桶(Bucket)。

散列函数

我们需要在元素和桶数组对应位置建立一种映射映射关系,这种映射关系就是散列函数,也可以叫哈希函数

散列函数构造

散列函数也叫哈希函数,假如我们数据元素的key是整数或者可以转换为一个整数,可以通过这些常见方法来获取映射地址。

  • 直接定址法

直接根据key来映射到对应的数组位置,例如1232放到下标1232的位置。

  • 数字分析法

取key的某些数字(例如十位和百位)作为映射的位置

  • 平方取中法

取key平方的中间几位作为映射的位置

  • 折叠法

将key分割成位数相同的几段,然后把它们的叠加和作为映射的位置

  • 除留余数法

H(key)=key%p(p<=N),关键字除以一个不大于哈希表长度的正整数p,所得余数为哈希地址,这是应用最广泛的散列函数构造方法。
深度学习HashMap之手撕HashMap

在Java里,Object类里提供了一个默认的hashCode()方法,它返回的是一个32位int形整数,其实也就是对象在内存里的存储地址。
但是,这个整数肯定是要经过处理的,上面几种方法里直接定址法可以排除,因为我们不可能建那么大的桶数组。
而且我们最后计算出来的散列地址,尽可能要在桶数组长度范围之内,所以我们选择除留取余法。

哈希冲突

理想的情况,是每个数据元素经过哈希函数的计算,落在它独属的桶数组的位置。
但是现实通常不如人意,我们的空间是有限的,设计再好的哈希函数也不能完全避免哈希冲突。所谓的哈希冲突,就是不同的key经过哈希函数计算,落到了同一个下标。

既然有了冲突,就得想办法解决冲突,常见的解决哈希冲突的办法有:

链地址法

也叫拉链法,看起来,像在桶数组上再拉一个链表出来,把发生哈希冲突的元素放到一个链表里,查找的时候,从前往后遍历链表,找到对应的key就行了。

开放地址法

开放地址法,简单来说就是给冲突的元素再在桶数组里找到一个空闲的位置。
找到空闲位置的方法有很多种:

  • 线行探查法: 从冲突的位置开始,依次判断下一个位置是否空闲,直至找到空闲位置
  • 平方探查法: 从冲突的位置x开始,第一次增加12个位置,第二次增加22…,直至找到空闲的位置
  • 双散列函数探查法
    ……

再哈希法

构造多个哈希函数,发生冲突时,更换哈希函数,直至找到空闲位置。

建立公共溢出区

建立公共溢出区,把发生冲突的数据元素存储到公共溢出区。
很明显,接下来我们解决冲突,会使用链地址法。
好了,哈希表的介绍就到这,相信你已经对哈希表的本质有了深刻的理解,接下来,进入coding时间。

HashMap实现

我们实现的简单的HashMap命名为ThirdHashMap,先确定整体的设计:

散列函数:hashCode()+除留余数法
冲突解决:链地址法

整体结构如下:
深度学习HashMap之手撕HashMap

内部节点类

我们需要定义一个节点来作为具体数据的载体,它不仅要承载键值对,同样还得作为单链表的节点:

   /**
     * 节点类
     *
     * @param <K>
     * @param <V>
     */
    class Node<K, V> {
        //键值对
        private K key;
        private V value;

        //链表,后继
        private Node<K, V> next;

        public Node(K key, V value) {
            this.key = key;
            this.value = value;
        }

        public Node(K key, V value, Node<K, V> next) {
            this.key = key;
            this.value = value;
            this.next = next;
        }
    }

成员变量

主要有四个成员变量,其中桶数组作为装载数据元素的结构:

  //默认容量
    final int DEFAULT_CAPACITY = 16;
    //负载因子
    final float LOAD_FACTOR = 0.75f;
    //HashMap的大小
    private int size;
    //桶数组
    Node<K, V>[] buckets;

构造方法

构造方法有两个,无参构造方法,桶数组默认容量,有参指定桶数组容量。

   /**
     * 无参构造器,设置桶数组默认容量
     */
    public ThirdHashMap() {
        buckets = new Node[DEFAULT_CAPACITY];
        size = 0;
    }

    /**
     * 有参构造器,指定桶数组容量
     *
     * @param capacity
     */
    public ThirdHashMap(int capacity) {
        buckets = new Node[capacity];
        size = 0;
    }

散列函数

散列函数,就是我们前面说的hashCode()和数组长度取余。

/**
 * 哈希函数,获取地址
 *
 * @param key
 * @return
 */
private int getIndex(K key, int length) {
    //获取hash code
    int hashCode = key.hashCode();
    //和桶数组长度取余
    int index = hashCode % length;
    return Math.abs(index);
}

put方法

我用了一个putval方法来完成实际的逻辑,这是因为扩容也会用到这个方法。
大概的逻辑:

  • 获取元素插入位置
  • 当前位置为空,直接插入
  • 位置不为空,发生冲突,遍历链表
  • 如果元素key和节点相同,覆盖,否则新建节点插入链表头部
  /**
     * put方法
     *
     * @param key
     * @param value
     * @return
     */
    public void put(K key, V value) {
        //判断是否需要进行扩容
        if (size >= buckets.length * LOAD_FACTOR) resize();
        putVal(key, value, buckets);
    }

    /**
     * 将元素存入指定的node数组
     *
     * @param key
     * @param value
     * @param table
     */
    private void putVal(K key, V value, Node<K, V>[] table) {
        //获取位置
        int index = getIndex(key, table.length);
        Node node = table[index];
        //插入的位置为空
        if (node == null) {
            table[index] = new Node<>(key, value);
            size++;
            return;
        }
        //插入位置不为空,说明发生冲突,使用链地址法,遍历链表
        while (node != null) {
            //如果key相同,就覆盖掉
            if ((node.key.hashCode() == key.hashCode())
                    && (node.key == key || node.key.equals(key))) {
                node.value = value;
                return;
            }
            node = node.next;
        }
        //当前key不在链表中,插入链表头部
        Node newNode = new Node(key, value, table[index]);
        table[index] = newNode;
        size++;
    }

扩容方法

扩容的大概过程

  • 创建两倍容量的新数组
  • 将当前桶数组的元素重新散列到新的数组
  • 新数组置为map的桶数组
   /**
     * 扩容
     */
    private void resize() {
        //创建一个两倍容量的桶数组
        Node<K, V>[] newBuckets = new Node[buckets.length * 2];
        //将当前元素重新散列到新的桶数组
        rehash(newBuckets);
        buckets = newBuckets;
    }

    /**
     * 重新散列当前元素
     *
     * @param newBuckets
     */
    private void rehash(Node<K, V>[] newBuckets) {
        //map大小重新计算
        size = 0;
        //将旧的桶数组的元素全部刷到新的桶数组里
        for (int i = 0; i < buckets.length; i++) {
            //为空,跳过
            if (buckets[i] == null) {
                continue;
            }
            Node<K, V> node = buckets[i];
            while (node != null) {
                //将元素放入新数组
                putVal(node.key, node.value, newBuckets);
                node = node.next;
            }
        }
    }

get方法

get方法就比较简单,通过散列函数获取地址,这里我省去了有没有成链表的判断,直接查找链表。

  /**
     * 获取元素
     *
     * @param key
     * @return
     */
    public V get(K key) {
        //获取key对应的地址
        int index = getIndex(key, buckets.length);
        if (buckets[index] == null) return null;
        Node<K, V> node = buckets[index];
        //查找链表
        while (node != null) {
            if ((node.key.hashCode() == key.hashCode())
                    && (node.key == key || node.key.equals(key))) {
                return node.value;
            }
            node = node.next;
        }
        return null;
    }

完整代码:


public class ThirdHashMap<K, V> {

    /**
     * 节点类
     *
     * @param <K>
     * @param <V>
     */
    class Node<K, V> {
        //键值对
        private K key;
        private V value;

        //链表,后继
        private Node<K, V> next;

        public Node(K key, V value) {
            this.key = key;
            this.value = value;
        }

        public Node(K key, V value, Node<K, V> next) {
            this.key = key;
            this.value = value;
            this.next = next;
        }
    }


    //默认容量
    final int DEFAULT_CAPACITY = 16;
    //负载因子
    final float LOAD_FACTOR = 0.75f;
    //HashMap的大小
    private int size;
    //桶数组
    Node<K, V>[] buckets;

    /**
     * 无参构造器,设置桶数组默认容量
     */
    public ThirdHashMap() {
        buckets = new Node[DEFAULT_CAPACITY];
        size = 0;
    }

    /**
     * 有参构造器,指定桶数组容量
     *
     * @param capacity
     */
    public ThirdHashMap(int capacity) {
        buckets = new Node[capacity];
        size = 0;
    }

    /**
     * 哈希函数,获取地址
     *
     * @param key
     * @return
     */
    private int getIndex(K key, int length) {
        //获取hash code
        int hashCode = key.hashCode();
        //和桶数组长度取余
        int index = hashCode % length;
        return Math.abs(index);
    }

    /**
     * put方法
     *
     * @param key
     * @param value
     * @return
     */
    public void put(K key, V value) {
        //判断是否需要进行扩容
        if (size >= buckets.length * LOAD_FACTOR) resize();
        putVal(key, value, buckets);
    }

    /**
     * 将元素存入指定的node数组
     *
     * @param key
     * @param value
     * @param table
     */
    private void putVal(K key, V value, Node<K, V>[] table) {
        //获取位置
        int index = getIndex(key, table.length);
        Node node = table[index];
        //插入的位置为空
        if (node == null) {
            table[index] = new Node<>(key, value);
            size++;
            return;
        }
        //插入位置不为空,说明发生冲突,使用链地址法,遍历链表
        while (node != null) {
            //如果key相同,就覆盖掉
            if ((node.key.hashCode() == key.hashCode())
                    && (node.key == key || node.key.equals(key))) {
                node.value = value;
                return;
            }
            node = node.next;
        }
        //当前key不在链表中,插入链表头部
        Node newNode = new Node(key, value, table[index]);
        table[index] = newNode;
        size++;
    }

    /**
     * 扩容
     */
    private void resize() {
        //创建一个两倍容量的桶数组
        Node<K, V>[] newBuckets = new Node[buckets.length * 2];
        //将当前元素重新散列到新的桶数组
        rehash(newBuckets);
        buckets = newBuckets;
    }

    /**
     * 重新散列当前元素
     *
     * @param newBuckets
     */
    private void rehash(Node<K, V>[] newBuckets) {
        //map大小重新计算
        size = 0;
        //将旧的桶数组的元素全部刷到新的桶数组里
        for (int i = 0; i < buckets.length; i++) {
            //为空,跳过
            if (buckets[i] == null) {
                continue;
            }
            Node<K, V> node = buckets[i];
            while (node != null) {
                //将元素放入新数组
                putVal(node.key, node.value, newBuckets);
                node = node.next;
            }
        }
    }

    /**
     * 获取元素
     *
     * @param key
     * @return
     */
    public V get(K key) {
        //获取key对应的地址
        int index = getIndex(key, buckets.length);
        if (buckets[index] == null) return null;
        Node<K, V> node = buckets[index];
        //查找链表
        while (node != null) {
            if ((node.key.hashCode() == key.hashCode())
                    && (node.key == key || node.key.equals(key))) {
                return node.value;
            }
            node = node.next;
        }
        return null;
    }

    /**
     * 返回HashMap大小
     *
     * @return
     */
    public int size() {
        return size;
    }
    
}

测试

测试代码如下:文章来源地址https://www.toymoban.com/news/detail-484422.html

 @Test
    void test0() {
        ThirdHashMap map = new ThirdHashMap();
        for (int i = 1; i <= 72; i++) {
            map.put("孙悟空" + i, "看我72变" + i);
        }
        System.out.println(map.size());
        for (int i = 1; i <=72; i++) {
            System.out.println(map.get("孙悟空" + i));
        }
    }

    }

到了这里,关于深度学习HashMap之手撕HashMap的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 手撕深度学习中的优化器

    手撕深度学习中的优化器

    深度学习中的优化算法采用的原理是梯度下降法,选取适当的初值 params ,不断迭代,进行目标函数的极小化,直到收敛。由于负梯度方向时使函数值下降最快的方向,在迭代的每一步,以负梯度方向更新 params 的值,从而达到减少函数值的目的。 Gradient descent in deep learning

    2023年04月09日
    浏览(9)
  • HashMap如何解决哈希冲突

    HashMap如何解决哈希冲突

    Hash算法就是把任意长度的输入通过 散列算法 编程固定长度的输出。这个输出结果就是一个 散列值 。 Hash表又称为“ 散列表 ”,它是通过key直接访问到内存存储位置的数据结构。在具体的实现上,我们通过Hash函数把key映射到表中的某个位置,来获取这个位置的数据,从而去

    2023年04月26日
    浏览(12)
  • HashMap如何解决哈希冲突?

    HashMap如何解决哈希冲突?

    了解Hash冲突首先了解Hash算法和Hash表 Hash算法就是把任意长度的输入通过散列算法变成固定长度的输出,这个输出结果就是一个散列值 Hash表又叫做“散列表”,它是通过key直接访问到内存存储位置的数据结构,在具体的实现上,我们通过Hash函数,把key映射到表中的某个位置

    2023年04月12日
    浏览(10)
  • 深度学习入门--认识深度学习以及安装工具

    深度学习入门--认识深度学习以及安装工具

    感谢李沐老师的教学视频以及《动手学深度学习》,视频总时长47h https://zh-v2.d2l.ai/chapter_preface/index.html https://www.bilibili.com/video/BV1if4y147hS/?spm_id_from=333.999.0.0vd_source=0cafd28c011c5492e6d7e39f1fd256d9 介绍深度学习经典和最新模型LeNet,ResNet,LSTM,BERT,.. 机器学习基础 损失函数、目标函数、

    2024年02月07日
    浏览(45)
  • 认识机器学习与深度学习

    目录 1. 认识机器学习 1.1 什么是机器学习? 1.2 机器学习可以解决的问题 1.3 机器学习的基础知识 2. 认识深度学习 2.1 什么是深度学习? 2.2 深度学习能做什么? 2.3 深度学习的基础知识 2.4 深度学习的神经网络种类 3. 总结         机器学习(Machine Learning)是一种基于计算机算

    2024年02月02日
    浏览(13)
  • Rust 笔记:Rust 语言中哈希结构(哈希映射,HashMap)、集合(哈希集,HashSet)及其使用

    Rust 笔记 Rust 语言中映射(HashMap)与集合(HashSet)及其用法 作者 : 李俊才 (jcLee95):https://blog.csdn.net/qq_28550263?spm=1001.2101.3001.5343 邮箱 : 291148484@163.com 本文地址 :https://blog.csdn.net/qq_28550263/article/details/130876735 【介绍】:本文介绍 Rust 中哈希结构相关概念及其使用。在 R

    2024年02月09日
    浏览(13)
  • 哈希表HashMap(基于vector和list)

    哈希表HashMap(基于vector和list)

    C++数据结构与算法实现(目录) 1 什么是HashMap? 我们这里要实现的HashMap接口不会超过标准库的版本(是一个子集)。 HashMap是一种键值对容器( 关联容器 ),又叫 字典 。 和其他容易一样,它可以对存储的元素进行 增删改查 操作。 它之所以叫关联容器,是因为它的每个元

    2024年02月10日
    浏览(14)
  • 手撕哈希表

    手撕哈希表

    🌈感谢阅读East-sunrise学习分享——[进阶数据结构]哈希表 博主水平有限,如有差错,欢迎斧正🙏感谢有你 码字不易,若有收获,期待你的点赞关注💙我们一起进步🚀 🌈我们上一篇博客分享了优异的数据结构——红黑树 ✏️利用红黑树可封装容器set/map,但是由于一些需求

    2023年04月11日
    浏览(9)
  • 面试题(2)-HashMap 是怎么解决哈希冲突的

    Hash函数指将哈希表中元素的关键键值映射为元素存储位置的函数。 把任意长度的输入通过散列算法变换成固定长度的输出,该输出就是散列值。 散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来确定唯一的输入值。因此,散

    2024年02月14日
    浏览(7)
  • 哈希表HashMap(基于vector和list)(答案)

    答案如下

    2024年02月15日
    浏览(21)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包