Mongo数据一致性浅析

这篇具有很好参考价值的文章主要介绍了Mongo数据一致性浅析。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一致性简介

根据 CAP 理论的一致性(Consistency)问题,即在读写发生在不同节点的情况下,怎么保证每次读取都能获取到最新写入的数据。这个一致性即是我们今天要讨论的MongoDB 可调一致性模型中的一致性,区别于单机数据库系统中经常提到的 ACID 理论中的一致性。

可调性具体指的是什么呢
这里就不得不提分布式系统中的另外一个理论,PACELC。PACELC 在 CAP 提出 10 年之后,即 2012 年,在一篇 Paper 中被正式提出,其核心观点是,根据 CAP,在一个存在网络分区( P )的分布式系统中,我们面临在可用性( A )和一致性( C )之间的选择,但除此之外( E ),即使暂时没有网络分区的存在,在实际系统中,我们也要面临在访问延迟( L )和一致性( C )之间的抉择。所以,PACELC 理论是结合现实情况,对 CAP 理论的一种扩展。

以复制为基础构建的分布式系统中,一致性模型通常可按照以数据为中心(Data-centric)以客户端为中心(Client-centric)来划分,

mongo一致性

MongoDB 的 Causal Consistency Session 即提供了上述几个承诺:RYW,MR,MW,WFR。

但是,这里是 MongoDB 和标准不太一样的地方,MongoDB 的因果一致性提供的是 Client-centric 一致性模型下的承诺,而非 Data-centric。这么做主要还是从系统开销角度考虑,实现 Data-centric 下的因果一致性所需要的全局一致性视图代价过高,在真实的场景中,Client-centric 一致性模型往往足够了,关于这一点的详细论述可参考 MongoDB 官方在 SIGMOD’19 上 Paper 的 2.3 节。

Causal Consistency 在 MongoDB 中是相对比较独立一块实现,只有当客户端读写的时候开启 Causal Consistency Session 才提供相应承诺没有开启 Causal Consistency Session 时,MongoDB 通过 writeConcern 和 readConcern 接口提供了可调一致性,具体来说,包括线性一致性和最终一致性

最终一致性在标准中的定义是非常宽松的,是最弱的一致性模型,但是在这个一致性级别下 MongoDB 也通过 writeConcern 和 readConcern 接口的配合使用,提供了丰富的对性能和正确性的选择,从而贴近真实的业务场景。

ReadConcern

readConcern 的初衷在于解决『脏读』的问题,比如用户从 MongoDB 的 primary 上读取了某一条数据,但这条数据并没有同步到大多数节点,然后 primary 就故障了,重新恢复后 这个primary 节点会将未同步到大多数节点的数据回滚掉,导致用户读到了『脏数据』。
当指定 readConcern 级别为 majority 时,能保证用户读到的数据『已经写入到大多数节点』,而这样的数据肯定不会发生回滚,避免了脏读的问题。
需要注意的是, readConcern 能保证读到的数据『不会发生回滚』,但并不能保证读到的数据是最新的,这个官网上也有说明。

WriteConcern

MongoDB支持的WriteConcern选项如下

  1. w: 数据写入到number个节点才向用客户端确认

  • {w: 0} 对客户端的写入不需要发送任何确认,适用于性能要求高,但不关注正确性的场景

  • {w: 1} 默认的writeConcern,数据写入到Primary就向客户端发送确认

  • {w: “majority”} 数据写入到副本集大多数成员后向客户端发送确认,适用于对数据安全性要求比较高的场景,该选项会降低写入性能

  1. j: 写入操作的journal持久化后才向客户端确认

  • 默认为”{j: false},如果要求Primary写入持久化了才向客户端确认,则指定该选项为true

  1. wtimeout: 写入超时时间,仅w的值大于1时有效。

  • 当指定{w: }时,数据需要成功写入number个节点才算成功,如果写入过程中有节点故障,可能导致这个条件一直不能满足,从而一直不能向客户端发送确认结果,针对这种情况,客户端可设置wtimeout选项来指定超时时间,当写入过程持续超过该时间仍未结束,则认为写入失败。

三方库支持

源码地址:https://github.com/mongodb/mongo-go-driver

这里以golang的mongo-driver库为例:

type Collection struct {
   client *Client
   db *Database
   name string
   readConcern *readconcern.ReadConcern
   writeConcern *writeconcern.WriteConcern
   readPreference *readpref.ReadPref
   readSelector description.ServerSelector
   writeSelector description.ServerSelector
   registry *bsoncodec.Registry
}
// ReadPref determines which servers are considered suitable for read operations.
type ReadPref struct {
  maxStaleness time.Duration
  maxStalenessSet bool
  mode Mode
  tagSets []tag.Set
  hedgeEnabled *bool
}
// Mode indicates the user's preference on reads.
type Mode uint8
// Mode constants
const (
  _ Mode = iota
  // PrimaryMode indicates that only a primary is
  // considered for reading. This is the default
  // mode.
  PrimaryMode
  // PrimaryPreferredMode indicates that if a primary
  // is available, use it; otherwise, eligible
  // secondaries will be considered.
  PrimaryPreferredMode
  // SecondaryMode indicates that only secondaries
  // should be considered.
  SecondaryMode
  // SecondaryPreferredMode indicates that only secondaries
  // should be considered when one is available. If none
  // are available, then a primary will be considered.
  SecondaryPreferredMode
  // NearestMode indicates that all primaries and secondaries
  // will be considered.
  NearestMode
)

读写分离

mongodb进行了读写分离,写入往主库,读取从从库,这样减轻了主库的压力。但由于从库同步数据的延时性,某数据在主库写入后马上从从库读,会读取到旧数据并且会将旧数据塞入了缓存。mongodb写的操作有相关设置,writeConcern可设置为Replica Acknowledged级别,即数据被写入到至少两个从库节点返回。这样虽然一定程度上解决从库延时,但写的性能大大降低。

同步流程

Primary上的写入会记录oplog,存储到一个固定大小的capped collection里,Secondary主动从Primary上拉取oplog并重放应用到自身,以保持数据与Primary节点上一致。

initial sync

新节点加入(或者主动向Secondary发送resync)时,Secondary会先进行一次initial sync,即全量同步,遍历Primary上的所有DB的所有集合,将数据拷贝到自身节点,然后读取『全量同步开始到结束时间段内』的oplog并重放。全量同步不是本文讨论的重点,将不作过多的介绍。

tailing oplog

全量同步结束后,Secondary就开始从结束时间点建立tailable cursor,不断的从同步源拉取oplog并重放应用到自身,这个过程并不是由一个线程来完成的,mongodb为了提升同步效率,将拉取oplog以及重放oplog分到了不同的线程来执行。

  • producer thread,这个线程不断的从同步源上拉取oplog,并加入到一个BlockQueue的队列里保存着,BlockQueue最大存储240MB的oplog数据,当超过这个阈值时,就必须等到oplog被replBatcher消费掉才能继续拉取。

  • replBatcher thread,这个线程负责逐个从producer thread的队列里取出oplog,并放到自己维护的队列里,这个队列最多允许5000个元素,并且元素总大小不超过512MB,当队列满了时,就需要等待oplogApplication消费掉。

  • oplogApplication会取出replBatch thread当前队列的所有元素,并将元素根据docId(如果存储引擎不支持文档锁,则根据集合名称)分散到不同的replWriter线程,replWriter线程将所有的oplog应用到自身;等待所有oplog都应用完毕,oplogApplication线程将所有的oplog顺序写入到local.oplog.rs集合。

producer的buffer和apply线程的统计信息都可以通过db.serverStatus().metrics.repl来查询到
默认情况下,Secondary采用16个replWriter线程来重放oplog,可通过启动时设置replWriterThreadCount参数来定制线程数,当提升线程数到32时,同步的情况大大改观,主备写入的qps基本持平,主备上数据同步的延时控制在1s以内。

修改replWriterThreadCount参数的方法,具体应该调整到多少跟Primary上的写入负载如写入qps、平均文档大小等相关,并没有统一的值。

通过mongod命令行来指定 mongod --setParameter replWriterThreadCount=32

在配置文件中指定

setParameter:
    replWriterThreadCount: 32

oplog示例

cmgo-9t1zzciv_0:PRIMARY> use local
switched to db local
cmgo-9t1zzciv_0:PRIMARY> db.oplog.rs.find({}).limit(1).pretty()
{
        "ts" : Timestamp(1672717376, 3),
        "t" : NumberLong(2),
        "h" : NumberLong(0),
        "v" : 2,
        "op" : "u",
        "ns" : "component.deploy",
        "ui" : UUID("a164a9ab-7b3a-43e5-890d-64e1142b3455"),
        "o2" : {
                "_id" : NumberLong(8814)
        },
        "wall" : ISODate("2023-01-03T03:42:56.762Z"),
        "lsid" : {
                "id" : UUID("f2ce9e4a-b863-4830-9824-d5e773846512"),
                "uid" : BinData(0,"+WgOVnKmrMF6/mSQ4vglRC+SRli4twPTLNSeVRPyVy8=")
        },
        "txnNumber" : NumberLong(1325),
        "stmtId" : 0,
        "prevOpTime" : {
                "ts" : Timestamp(0, 0),
                "t" : NumberLong(-1)
        },
        "o" : {
                "$v" : 1,
                "$set" : {}
      }
}

http://mysql.taobao.org/monthly/2021/04/02/文章来源地址https://www.toymoban.com/news/detail-491712.html

到了这里,关于Mongo数据一致性浅析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 缓存数据一致性探究

    缓存数据一致性探究

    缓存是一种较低成本提升系统性能的方式,自它面世第一天起就备受广大开发者的喜爱。然而正如《人月神话》中的那句经典的“没有银弹”中所说,软件工程的设计没有银弹。 就像每一次发布上线修复问题的同时,也极易引入新的问题,自缓存诞生的第一天起, 缓存与数

    2024年02月16日
    浏览(12)
  • Redis 数据一致性

    当我们在使用缓存时,如果发生数据变更,那么你需要同时操作缓存和数据库,而它们两个又分属不同的系统,因此无法做到同时操作成功或失败,因此在并发读写下很可能出现缓存与数据库数据不一致的情况 理论上可以通过分布式事务保证同时操作成功或失败,但这会影响

    2024年02月03日
    浏览(15)
  • 深入理解高并发下的MySQL与Redis缓存一致性问题(增删改查数据缓存的一致性、Canal、分布式系统CAP定理、BASE理论、强、弱一致性、顺序、线性、因果、最终一致性)

    一些小型项目,或极少有并发的项目,这些策略在无并发情况下,不会有什么问题。 读数据策略:有缓存则读缓存,然后接口返回。没有缓存,查询出数据,载入缓存,然后接口返回。 写数据策略:数据发生了变动,先删除缓存,再更新数据,等下次读取的时候载入缓存,

    2024年03月20日
    浏览(18)
  • Redis 原理缓存过期、一致性hash、雪崩、穿透、并发、布隆、缓存更新策略、缓存数据库一致性

    Redis 原理缓存过期、一致性hash、雪崩、穿透、并发、布隆、缓存更新策略、缓存数据库一致性

    redis的过期策略可以通过配置文件进行配置 redis会把设置了过期时间的key放在单独的字典中,定时遍历来删除到期的key。 1).每100ms从过期字典中 随机挑选20个,把其中过期的key删除; 2).如果过期的key占比超过1/4,重复步骤1 为了保证不会循环过度,导致卡顿,扫描时间上限

    2024年02月08日
    浏览(19)
  • 缓存和数据库一致性

    缓存和数据库一致性

    项目的难点是如何保证缓存和数据库的一致性。无论我们是先更新数据库,后更新缓存还是先更新数据库,然后删除缓存,在并发场景之下,仍然会存在数据不一致的情况(也存在删除失败的情况,删除失败可以使用异步重试解决)。有一种解决方法是延迟双删的策略,先删

    2024年01月17日
    浏览(14)
  • 通过kafka学习数据一致性

    数据从主节点(leader)复制到从节点(follower)的过程中,由于网络延迟、节点故障或其他原因 可能导致从节点未能及时获取或处理主节点的数据变更,从而产生数据不一致 消息提交涉及多个阶段,包括生产者发送消息、消息被写入日志、消息被复制到从节点等。 如果在这

    2024年02月19日
    浏览(15)
  • 一致性哈希(哈希环)解决数据分布问题

    哈希算法是程序开发过程中最广泛接触到的的算法之一,典型的应用有安全加密、数据校验、唯一标识、散列函数、负载均衡、数据分片、分布式存储。前些天遇到用一致性哈希(哈希环)的场景,不过我细想一下,对这个知识点好像了解过,但是又没太深印象,说不出具体

    2024年02月04日
    浏览(11)
  • 使用双异步后,如何保证数据一致性?

    使用双异步后,如何保证数据一致性?

    大家好,我是哪吒。 在上一篇文章中,我们 通过双异步的方式导入了10万行的Excel ,有个小伙伴在评论区问我, 如何保证插入后数据的一致性呢? 很简单,通过对比Excel文件行数和入库数量是否相等即可。 那么,如何获取异步线程的返回值呢? 我们可以通过给异步方法添加

    2024年01月23日
    浏览(13)
  • ZooKeeper是如何保证数据一致性的?

    ZooKeeper是如何保证数据一致性的?

             目录 一、分布式一致性原理 二、ZooKeeper架构         2.1 ZAB 协议操作顺序性         2.2 领导者选举         成员身份         成员状态         领导者选举 三、总结         在分布式系统里的多台服务器要对数据状态达成一致,其实是一件很有难度和挑

    2024年04月11日
    浏览(8)
  • 缓存和数据库一致性问题分析

    目录 1、数据不一致的原因 1.1 并发操作 1.2 非原子操作 1.3 数据库主从同步延迟 2、数据不一致的解决方案 2.1 并发操作 2.2 非原子操作 2.3 主从同步延迟 2.4 最终方案 3、不同场景下的特殊考虑 3.1 读多写少的场景 3.2 读少写多的场景 导致缓存和数据库数据不一致的原因有三个

    2024年02月14日
    浏览(11)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包