论文笔记--OpenPrompt: An Open-source Framework for Prompt-learning

这篇具有很好参考价值的文章主要介绍了论文笔记--OpenPrompt: An Open-source Framework for Prompt-learning。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1. 文章简介

  • 标题:OpenPrompt: An Open-source Framework for Prompt-learning
  • 作者:Ning Ding, Shengding Hu, Weilin Zhao, Yulin Chen, Zhiyuan Liu, Hai-Tao Zheng, Maosong Sun
  • 日期:2022
  • 期刊:ACL

2. 文章概括

  文章介绍了一种开源的工具OpenPrompt,该工具将prompt-learning的一些操作进行封装处理,设计成为一种用户友好的开源三方库,使用起来非常方便。
  OpenPrompt使用的基本方法为
论文笔记--OpenPrompt: An Open-source Framework for Prompt-learning,论文阅读,论文阅读,prompt,NLP,pipeline,OpenPrompt

3 文章重点技术

  • PLMs:文章支持Huggingface transformers上的PLMs(预训练模型),开发者可通过下述操作直接加载PLMs:
from openprompt.plms import load_plm
plm, tokenizer, model_config, WrapperClass = load_plm("bert", path_to_bert)
  • 预训练模型PLMs:文章支持Huggingface transformers上的PLMs(预训练模型),开发者可通过下述操作直接加载PLMs:
from openprompt.plms import load_plm
plm, tokenizer, model_config, WrapperClass = load_plm("bert", path_to_bert)
  • 分词Tokenization:文章特别设计了针对prompt learning的分词模块,可以自动选择合适的分词器,从而简化用户操作。分词器通过上述代码直接加载
  • 模板Templates:Templates将原始文本和软编码或是硬编码(文本)template结合,一般来说会包含上下文相关的token和掩码token。OpenPrompt接受用Python中的字典语法编写的template:
from openprompt.prompts import ManualTemplate
promptTemplate = ManualTemplate(
    text = '{"placeholder":"text_a"} It was {"mask"}',
    tokenizer = tokenizer,
)

文章给出了一些常用的templates的示例,见下表
论文笔记--OpenPrompt: An Open-source Framework for Prompt-learning,论文阅读,论文阅读,prompt,NLP,pipeline,OpenPrompt

  • 言语化Verbalizer:Verbalizer将原始的标签映射到词表中的label words,文章接受手动设计Verbalizer或直接调用AutomaticVerbalizer/SoftVerbalizer/…等API自带的verbalizer方法。下面为一个手动设计verbalizer的示例:
from openprompt.prompts import ManualVerbalizer
promptVerbalizer = ManualVerbalizer(
    classes = classes,
    label_words = {
        "negative": ["bad"],
        "positive": ["good", "wonderful", "great"],
    },
    tokenizer = tokenizer,
)
  • PromptModel:OpenPrompt使用PromptModel 模块来用于训练和推理,用户只需把上述template\ Verbalizer\ PLMs结合在一起即可以完成此步骤:
from openprompt import PromptForClassification
promptModel = PromptForClassification(
    template = promptTemplate,
    plm = plm,
    verbalizer = promptVerbalizer,

4. 文章亮点

  文章给出了开源工具OpenPrompt,将Prompt learning中涉及到的一些基本操作进行封装,形成了一个方便的pipeline。用户只需安装openprompt三方库并下载一个PLM,就可以进行简单的prompt learning了~

5. 原文传送门

OpenPrompt: An Open-source Framework for Prompt-learning
源代码文章来源地址https://www.toymoban.com/news/detail-580594.html

到了这里,关于论文笔记--OpenPrompt: An Open-source Framework for Prompt-learning的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • Top 5 Open Source Tools for Data Preprocessing in AI an

    作者:禅与计算机程序设计艺术 在构建机器学习模型时,数据预处理是一个重要环节。不管是监督学习还是无监督学习都需要进行数据预处理才能得到好的结果。从收集到清洗到准备好的数据,这其中通常会用到许多工具来完成。本文将整理并比较一些开源的数据预处理工具

    2024年02月08日
    浏览(8)
  • 论文笔记:Large Language Models as Urban Residents:An LLM Agent Framework for Personal Mobility Generati

    论文笔记:Large Language Models as Urban Residents:An LLM Agent Framework for Personal Mobility Generati

    使用LMM生成活动轨迹的开创性工作 理解活动模式(mobility pattern)——能够灵活模拟城市移动性 尽管个体活动轨迹数据由于通信技术的进步而丰富,但其实际使用往往受到隐私顾虑的限制 ——生成的数据可以提供一种可行的替代方案,提供了效用和隐私之间的平衡 之前有很

    2024年03月11日
    浏览(17)
  • 【论文笔记】An End-to-End Framework of Road User Detection, Tracking, and Prediction from Monocular Images

    【论文笔记】An End-to-End Framework of Road User Detection, Tracking, and Prediction from Monocular Images

    原文链接:https://arxiv.org/abs/2308.05026 目前的轨迹预测方法多基于道路使用者的真实信息,但在实际自动驾驶系统中这些信息是通过检测和跟踪模块得到的,不可避免的存在噪声。本文将感知模块与轨迹预测整合,进行端到端的检测、跟踪和轨迹预测。 本文感知模块使用单目图

    2024年04月28日
    浏览(11)
  • 【论文研读】-An Efficient Framework for Optimistic Concurrent Execution of Smart Contracts

    【论文研读】-An Efficient Framework for Optimistic Concurrent Execution of Smart Contracts

    区块链平台中的一个个交易都是由智能合约编写的,每一个交易想要成功上链,首先需要经过矿工(想要进行上链的节点,也就是新区块)进行挖矿,然后将挖好的区块交给验证者(区块链中已经挖矿成功的节点进行验证)进行验证,验证成功就会将区块上链;验证失败,则

    2024年01月21日
    浏览(14)
  • 论文阅读:UVIO: An UWB-Aided Visual-Inertial Odometry Framework with Bias-Compensated Anchors Initial

    论文阅读:UVIO: An UWB-Aided Visual-Inertial Odometry Framework with Bias-Compensated Anchors Initial

    今天再次仔细读了UVIO: An UWB-Aided Visual-Inertial Odometry Framework with Bias-Compensated Anchors Initialization这篇论文,这是23年8月份的论文,researchgate里说发表在2023IROS上,主要工作是修改openvins代码利用超宽带技术和视觉惯性里程计提供鲁棒低漂移定位,提出了一种多步初始化程序。 卫星

    2024年02月04日
    浏览(5)
  • 【论文笔记】Summarizing source code with Heterogeneous Syntax Graph and dual position

    【论文笔记】Summarizing source code with Heterogeneous Syntax Graph and dual position

    在本文中,我们提出了一个名为 HetSum 的新颖框架。具体来说,首先 通过在 AST 中设计六种类型的增强边来构建异构语法图(HSG) ,这表明了源代码的异构结构。同时,考虑布局信息, 为源代码中的每个标记设计了双重位置 。此外,我们在 HetSum 中 开发了异构图神经网络来

    2024年01月16日
    浏览(10)
  • 论文笔记--SentEval: An Evaluation Toolkit for Universal Sentence Representations

    论文笔记--SentEval: An Evaluation Toolkit for Universal Sentence Representations

    标题:SentEval: An Evaluation Toolkit for Universal Sentence Representations 作者:Alexis Conneau, Douwe Kiela 日期:2018 期刊:arxiv preprint   文章给出了一个可以自动评估NLP句子嵌入向量的开源工具SentEval,思想简单,操作便捷。由于很多当前的语言模型在评估下游任务的时候直接采用该工具包

    2024年02月16日
    浏览(9)
  • 论文笔记: Trajectory Clustering: A Partition-and-Group Framework

    论文笔记: Trajectory Clustering: A Partition-and-Group Framework

    07 Sigmoid 使用类DBSCAN的思路对轨迹聚类 现有的轨迹聚类算法是将相似的轨迹作为一个整体进行聚类,从而发现共同的轨迹。 但是这样容易错过一些共同的子轨迹( sub-trajectories )。 而在实际中,当我们对特殊感兴趣的区域进行分析时,子轨迹就特别重要。 图中有五条轨迹,

    2024年02月06日
    浏览(17)
  • [论文笔记] Open-Sora 1、sora复现方案概览

    GitHub - hpcaitech/Open-Sora: Unofficial implementation of OpenAI\\\'s Sora Open-Sora已涵盖: 提供 完整的Sora复现架构方案 ,包含从数据处理到训练推理全流程。 支持 动态分辨率 ,训练时可直接训练任意分辨率的视频,无需进行缩放。 支持 多种模型结构 。由于Sora实际模型结构未知,我们实现

    2024年03月10日
    浏览(10)
  • [论文笔记] In Search of an Understandable Consensus Algorithm (Extended Version)

    [论文笔记] In Search of an Understandable Consensus Algorithm (Extended Version)

    寻找可理解的共识算法 (扩展版) [Extended Paper] [Original Paper] ATC’14 (Original) Raft 是一个用于 管理复制日志的共识算法 . Raft 更 易于理解 , 且为构建实际的系统提供了更好的基础. Raft 分离了共识的关键要素, 如领导者选举、日志复制、安全性 ; 并通过更强的一致性来减少状态数量

    2024年02月02日
    浏览(9)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包