pytorch中分布式训练DDP教程(新手快速入门!)

这篇具有很好参考价值的文章主要介绍了pytorch中分布式训练DDP教程(新手快速入门!)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

简介

PyTorch是深度学习领域广泛使用的开源深度学习框架之一。随着深度学习模型的不断增大和数据集的不断增长,单机训练往往不能满足我们的需求。为了加速训练过程,我们可以使用分布式训练技术。在PyTorch中,分布式数据并行(Distributed Data Parallel,简称DDP)是一种常见的分布式训练方法,本篇博客将带您快速上手使用DDP进行分布式训练。

1. DDP简介

DDP是PyTorch中用于在多个GPU或多个计算节点上并行训练的分布式训练技术。它通过数据并行的方式,将模型的参数和梯度分布到多个设备或节点上,从而实现高效的训练。DDP在PyTorch 1.0及以后的版本中得到了原生支持。

2. DDP的优势

使用DDP进行分布式训练有以下几个优势:

a. 加速训练:通过数据并行,DDP能够在多个设备或节点上同时处理不同批次的数据,从而加快训练速度。

b. 内存效率:DDP在每个设备上只保存模型的局部副本和相应的梯度,而不是整个模型的副本,这样可以节省内存。

c. 不需要额外的代码:在PyTorch中,使用DDP进行分布式训练几乎不需要修改您的原始模型和训练代码。

3. 使用DDP进行分布式训练

下面,我们将展示如何在PyTorch中使用DDP进行分布式训练。首先,确保您已经安装了PyTorch的最新版本。

实现DDP流程简单概括如下:
1.首先进行DDP初始化:

dist.init_process_group(backend='nccl')

2.准备数据dataloader和sampler,需要在DDP初始化之后进行:

train_sampler = torch.utils.data.distributed.DistributedSampler(my_trainset)

3.构造model模型:

model = model.to(local_rank)

4.如果需要Load模型,则要在构造DDP模型之前,且只需要在master上加载就行了:

if dist.get_rank() == 0 and ckpt_path is not None:
    model.load_state_dict(torch.load(ckpt_path))

5.构造DDP model 模型:

model = DDP(model, device_ids=[local_rank], output_device=local_rank)

6.要在构造DDP model之后,才能用model初始化optimizer:

optimizer = torch.optim.SGD(model.parameters(), lr=0.001)

7.创建loss 函数:

loss_func = nn.CrossEntropyLoss().to(local_rank)

8.网络训练,设置DDP sampler的epoch,DistributedSampler需要这个来指定shuffle方式,通过维持各个进程之间的相同随机数种子使不同进程能获得同样的shuffle效果。

trainloader.sampler.set_epoch(epoch)

9.保存模型:save模型的时候,和DP模式一样,有一个需要注意的点:保存的是model.module而不是model。因为model其实是DDP model,参数是被**model=DDP(model)**包起来的。并且只需要在进程0上保存一次就行了,避免多次保存重复的东西。

    if dist.get_rank() == 0:
        torch.save(model.module.state_dict(), "%d.ckpt" % epoch)

10.终端bash命令行

# DDP: 使用torch.distributed.launch启动DDP模式
# 使用CUDA_VISIBLE_DEVICES,来决定使用哪些GPU
# CUDA_VISIBLE_DEVICES="0,1" python -m torch.distributed.launch --nproc_per_node 2 main.py

完整的代码如下

################
## main.py文件
import argparse
from tqdm import tqdm
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
# 新增:
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP

### 1. 基础模块 ### 
# 假设我们的模型是这个,与DDP无关
class ToyModel(nn.Module):
    def __init__(self):
        super(ToyModel, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
# 假设我们的数据是这个
def get_dataset():
    transform = torchvision.transforms.Compose([
        torchvision.transforms.ToTensor(),
        torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])
    my_trainset = torchvision.datasets.CIFAR10(root='./data', train=True, 
        download=True, transform=transform)
    # DDP:使用DistributedSampler,DDP帮我们把细节都封装起来了。
    #      用,就完事儿!sampler的原理,第二篇中有介绍。
    train_sampler = torch.utils.data.distributed.DistributedSampler(my_trainset)
    # DDP:需要注意的是,这里的batch_size指的是每个进程下的batch_size。
    #      也就是说,总batch_size是这里的batch_size再乘以并行数(world_size)。
    trainloader = torch.utils.data.DataLoader(my_trainset, 
        batch_size=16, num_workers=2, sampler=train_sampler)
    return trainloader
    
### 2. 初始化我们的模型、数据、各种配置  ####
# DDP:从外部得到local_rank参数
parser = argparse.ArgumentParser()
parser.add_argument("--local_rank", default=-1, type=int)
FLAGS = parser.parse_args()
local_rank = FLAGS.local_rank

# DDP:DDP backend初始化
torch.cuda.set_device(local_rank)
dist.init_process_group(backend='nccl')  # nccl是GPU设备上最快、最推荐的后端

# 准备数据,要在DDP初始化之后进行
trainloader = get_dataset()

# 构造模型
model = ToyModel().to(local_rank)
# DDP: Load模型要在构造DDP模型之前,且只需要在master上加载就行了。
ckpt_path = None
if dist.get_rank() == 0 and ckpt_path is not None:
    model.load_state_dict(torch.load(ckpt_path))
# DDP: 构造DDP model
model = DDP(model, device_ids=[local_rank], output_device=local_rank)

# DDP: 要在构造DDP model之后,才能用model初始化optimizer。
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)

# 假设我们的loss是这个
loss_func = nn.CrossEntropyLoss().to(local_rank)

### 3. 网络训练  ###
model.train()
iterator = tqdm(range(100))
for epoch in iterator:
    # DDP:设置sampler的epoch,
    # DistributedSampler需要这个来指定shuffle方式,
    # 通过维持各个进程之间的相同随机数种子使不同进程能获得同样的shuffle效果。
    trainloader.sampler.set_epoch(epoch)
    # 后面这部分,则与原来完全一致了。
    for data, label in trainloader:
        data, label = data.to(local_rank), label.to(local_rank)
        optimizer.zero_grad()
        prediction = model(data)
        loss = loss_func(prediction, label)
        loss.backward()
        iterator.desc = "loss = %0.3f" % loss
        optimizer.step()
    # DDP:
    # 1. save模型的时候,和DP模式一样,有一个需要注意的点:保存的是model.module而不是model。
    #    因为model其实是DDP model,参数是被`model=DDP(model)`包起来的。
    # 2. 只需要在进程0上保存一次就行了,避免多次保存重复的东西。
    if dist.get_rank() == 0:
        torch.save(model.module.state_dict(), "%d.ckpt" % epoch)


################
## Bash终端命令行运行
# DDP: 使用torch.distributed.launch启动DDP模式
# 使用CUDA_VISIBLE_DEVICES,来决定使用哪些GPU
# CUDA_VISIBLE_DEVICES="0,1" python -m torch.distributed.launch --nproc_per_node 2 main.py

结论

通过本篇博客,我们学习了如何在PyTorch中使用DDP进行分布式训练。DDP可以帮助我们充分利用多个GPU或计算节点的计算资源,加速深度学习模型的训练过程。希望这篇教程能够帮助您快速上手使用DDP进行分布式训练,并提高您的训练效率。在实际应用中,还可以根据需要调整代码以适应更复杂的模型和数据设置。祝您在深度学习的道路上取得更多的成就!文章来源地址https://www.toymoban.com/news/detail-587911.html

到了这里,关于pytorch中分布式训练DDP教程(新手快速入门!)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • pytorch 分布式训练

    分布式训练分为这几类: 按照并行方式来分:模型并行 vs 数据并行 按照更新方式来分:同步更新 vs 异步更新 按照算法来分:Parameter Server算法 vs AllReduce算法 这个函数主要有三个参数: module:即模型,此处注意,虽然输入数据被均分到不同gpu上,但每个gpu上都要拷贝一份模

    2024年02月12日
    浏览(15)
  • TensorFlow、PyTorch分布式训练

    要在两台主机之间使用分布式训练,您可以使用一些深度学习框架提供的工具和库来实现。 这里以TensorFlow为例,介绍一下如何在两台主机之间使用分布式训练。 首先,您需要安装TensorFlow和CUDA等相关软件,并确保两台主机都可以访问彼此。然后,您需要在代码中使用TensorF

    2024年02月07日
    浏览(12)
  • 【VSCode调试技巧】Pytorch分布式训练调试

    【VSCode调试技巧】Pytorch分布式训练调试

    最近遇到个头疼的问题,对于单机多卡的训练脚本,不知道如何使用VSCode进行Debug。 解决方案: 1、找到控制分布式训练的启动脚本,在自己的虚拟环境的/lib/python3.9/site-packages/torch/distributed/launch.py中 2、配置launch.josn文件,按照正确的参数顺序,填入args参数,注意区分位置参

    2024年04月27日
    浏览(11)
  • pytorch分布式训练报错RuntimeError: Socket Timeout

    出错背景:在我的训练过程中,因为任务特殊性,用的是多卡训练单卡测试策略。模型测试的时候,由于数据集太大且测试过程指标计算量大,因此测试时间较长。 报错信息: 从报错信息中可以看到是数据加载的时候,创建进程引起的超时,解决方法就是将“进程”的“存

    2024年02月13日
    浏览(18)
  • 【深度学习】【分布式训练】Collective通信操作及Pytorch示例

    【深度学习】【分布式训练】Collective通信操作及Pytorch示例

    相关博客 【Megatron-DeepSpeed】张量并行工具代码mpu详解(一):并行环境初始化 【Megatron-DeepSpeed】张量并行工具代码mpu详解(二):Collective通信操作的封装mappings 【深度学习】【分布式训练】DeepSpeed:AllReduce与ZeRO-DP 【深度学习】混合精度训练与显存分析 【深度学习】【分布式训练

    2023年04月13日
    浏览(10)
  • 【深入了解PyTorch】PyTorch分布式训练:多GPU、数据并行与模型并行

    在深度学习领域,模型的复杂性和数据集的巨大规模使得训练过程变得极具挑战性。为了加速训练过程,利用多个GPU进行并行计算是一种常见的方法。PyTorch作为一种流行的深度学习框架,提供了强大的分布式训练工具,使得多GPU、数据并行和模型并行等技术变得更加容易实现

    2024年02月12日
    浏览(15)
  • 1、pytorch分布式数据训练结合学习率周期及混合精度

    正如标题所写,我们正常的普通训练都是单机单卡或单机多卡。而往往一个高精度的模型需要训练时间很长,所以DDP分布式数据并行和混合精度可以加速模型训练。混精可以增大batch size. 如下提供示例代码,经过官网查阅验证的。原始代码由百度文心一言提供。 问题:pytor

    2024年02月07日
    浏览(15)
  • PyTorch Lightning:通过分布式训练扩展深度学习工作流

    PyTorch Lightning:通过分布式训练扩展深度学习工作流

              欢迎来到我们关于 PyTorch Lightning 系列的第二篇文章!在上一篇文章中,我们向您介绍了 PyTorch Lightning,并探讨了它在简化深度学习模型开发方面的主要功能和优势。我们了解了 PyTorch Lightning 如何为组织和构建 PyTorch 代码提供高级抽象,使研究人员和从业者能够

    2024年02月11日
    浏览(14)
  • 机器学习洞察 | 分布式训练让机器学习更加快速准确

    机器学习洞察 | 分布式训练让机器学习更加快速准确

    机器学习能够基于数据发现一般化规律的优势日益突显,我们看到有越来越多的开发者关注如何训练出更快速、更准确的机器学习模型,而分布式训练 (Distributed Training) 则能够大幅加速这一进程。 亚马逊云科技开发者社区为开发者们提供全球的开发技术资源。这里有技术文档

    2024年02月16日
    浏览(12)
  • torch分布式数据并行:torch.nn.parallel.DistributedDataParallel(DDP),代码书写步骤

    多进程做多卡训练; 目录 1 初始化进程组: 2 当前进程所能用到的GPU卡的名称 3 将数据集随机分配到不同的GPU上 4 将train_sampler传入DataLoader中 5 将数据进行拷贝 6 模型放到GPU上 7 执行命令 8 模型保存 9 加载模型 10 注意事项 代码编写流程: 1 初始化进程组: ‘nccl’ 指定GPU之

    2024年02月15日
    浏览(9)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包