现实生活中机器学习的具体示例(Machine Learning 研习之二)

这篇具有很好参考价值的文章主要介绍了现实生活中机器学习的具体示例(Machine Learning 研习之二)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

笔者站点:秋码记录

机器学习在现实中的示例

通过上一篇的讲解,我们多多少少对机器学习(Machine Learning)有了些许了解,同时也对机器学习(Machine Learning)一词不再那么抗拒了。

那么,机器学习到底在现实生活为我们解决哪些难题呢?亦或是传统方案目前无法实现的。

  • 1、可以分析生产线上的产品图像,并对其进行分类。这属于图像分类范畴,通常是使用卷积神经网络(CNN),亦或是Transformer

  • 2、 可以用于对脑部检测是否存在肿瘤。这便是图像语义分割,图像中的每个像素都被分类 (因为我们想要确定肿瘤的确切位置和形状),通常是使用卷积神经网络(CNN),亦或是Transformer

  • 3、对新闻文章进行自动分类。这属于自然语言处理(NLP)范畴,更为具体地应该是文本分类。虽然可以使用循环神经网络(RNN)和卷积神经网络来解决,但显然Transformer处理的效果更好。

  • 4、自动标记恶意评论。这也是文本分类范畴,处理的方案也是选用NLP工具。

  • 5、自动总结长文档。这好比去阅读短篇小说,而后总结出讲了什么故事?或者是故事情节脉络。这是NLP的一个分支,称为文本摘要,同样也是使用NLP工具进行处理。

  • 6、搭建聊天机器人个人助理。这就涉及到诸多NLP组成部分,包括自然语言理解(NLU)和问答模块

  • 7、根据大量绩效指标来预测公司明年的盈利情况。这属于一个回归任务(即预测值),可以使用任何回归模型(regression model,)来解决,诸如线性回归( linear regression)、多项式回归(polynomial regression)模型。如果您考虑过去绩效指标的序列,您则会使用RNNCNNTransformer

  • 8、应用程序对语音命令做出反应。这是语音识别,需要处理音频样本,这些样本都是长而复杂的序列,通常使用RNNCNNTransformer来处理。

  • 9、检测信用卡欺诈。这属于异常检测。可以使用隔离森林(isolation forests)、高斯混合模型(Gaussian mixture models)和自动编码器(autoencoders)。

  • 10、根据购买情况对客户进行细分,进而为每个细分市场做出不同的营销策略。这便是聚类(clustering),可以使用 k-meansDBSCAN等来实现。

  • 11、使用图表来表示复杂的高维度数据集。这是数据可视化,通常涉及到降维技术

  • 12、根据客户过去的购买情况推荐出感兴趣的产品。这属于推荐系统。一种方法是将过去的购买行为(以及有关客户的其他信息)输入到人工神经网络(ANN),并让它输出最有可能的下一次购买行为。 该神经网络通常会根据所有客户过去的购买顺序进行训练。

  • 13、为游戏创建智能机器人。这通常可以使用强化学习(RL)来解决,它是机器学习的一个分支,训练代理(例如机器人)来选择随着时间的推移最大化其奖励的操作(例如,机器人可能会获得奖励) 每当玩家在给定环境(例如游戏)内失去一些生命值时。 在围棋比赛中击败世界冠军的著名 AlphaGo程序就是使用 RL构建的。

当然,这个示例列表可以一直列下去,但希望它能让您感受到机器学习可以处理的任务令人难以置信的广度和复杂性,并且 您将用于每项任务的技术类型。

机器学习系统的类型

机器学习系统种类繁多,但可以根据以下这些标准大致分出几大类,它远不止限于此。

  • 1、在它们训练期间如何受到监督,可细分为,包括但不限于监督无监督半监督以及自我监督等等。
  • 2、在它们训练期间是否可以即时增量学习,可分为在线学习批量学习
  • 3、它们的工作方式是简单地将新数据点已知数据点进行比较呢?还是通过检查数据训练中的模式并构建预测模型来工作呢?这样可分为基于实例的学习模型的学习

当然咯,这些标准并不是固化不变的,您总是可以按您自己喜欢的任何方式随意的组合它们。就拿垃圾邮件过滤器来说明吧!它可以使用深度神经网络(deep neural network)模型进行动态学习,该模型人类提供的垃圾邮件和样本数据进行训练,这使其成为一个在线基于模型监督学习系统。

训练监督

机器学习系统可以根据训练期间受到的监督数量类型进行划分。有很多类别,但目前只讲讲监督无监督自我监督半监督以及强化学习。

监督学习(Supervised learning)

监督学习中,提供给算法的训练集包括所需的解决方案,则称为标签

现实生活中机器学习的具体示例(Machine Learning 研习之二),人工智能(AI),机器学习,人工智能,监督学习,无监督,半监督,自我监督,强化学习

垃圾邮件过滤器接受了很多电子邮件及其分类(垃圾邮件)的训练,并且它必须学习该如何对新邮件进行分类。

也可以根据一组特征(里程、车龄以及品牌等)来预测目标值。为了训练,您需要为其提供很多汽车示例,包括它们的功能和价格。这种任务称为回归

注意:某些回归模型也可用于分类,反之亦然。逻辑回归( logistic regression)通常用于分类,因为它可以输出与给定类别的概率相对应的值(例如:垃圾邮件概率为20%)

现实生活中机器学习的具体示例(Machine Learning 研习之二),人工智能(AI),机器学习,人工智能,监督学习,无监督,半监督,自我监督,强化学习

回归问题:给定一个输入特征,预测一个值(通常有多个输入特征,有时有多个输出值)。

无监督学习(Unsupervised learning)

无监督学习中,训练数据是不需要标记的。该系统试图在没有老师的情况下进行学习。

假设您有大量有关博客访问者的数据,您可能需要运行聚类算法来尝试检测相似访问这组。而您永远也不会告诉算法访问这属于哪个组,它无需您的任何协助即可找到这些链接。它可能会注意到,40% 的访问者是喜欢漫画书并通常在放学后阅读您的博客的青少年,而 20% 是喜欢科幻小说并在周末访问的成年人。如果您使用了层次聚类算法(hierarchical clustering algorithm),它还可能将每个组细分为更小的组, 这可以帮助您针对每个组定位您的帖子。

(用于无监督学习的未标记训练集)

现实生活中机器学习的具体示例(Machine Learning 研习之二),人工智能(AI),机器学习,人工智能,监督学习,无监督,半监督,自我监督,强化学习

(聚类)

现实生活中机器学习的具体示例(Machine Learning 研习之二),人工智能(AI),机器学习,人工智能,监督学习,无监督,半监督,自我监督,强化学习

可视化算法也是一个无监督学习的好例子。您向它们提供大量复杂且未标记的数据,它们可以轻松输出绘制数据的 2D 或 3D 表示形式。 这些算法尝试保留尽可能多的结构(例如,尝试保持输入空间中的单独簇在可视化中不重叠),以便您可以了解数据的组织方式,并可能识别出意想不到的模式。

一个相关的任务是降维,其目标是简化数据而不丢失太多信息。 实现这一目标的一种方法是将多个相关特征合并为一个。 例如,一辆车的行驶里程可能与其车龄密切相关,因此降维算法会将它们合并为一个代表汽车磨损情况的特征, 这称为特征提取

现实生活中机器学习的具体示例(Machine Learning 研习之二),人工智能(AI),机器学习,人工智能,监督学习,无监督,半监督,自我监督,强化学习

在将训练数据提供给另一个机器学习算法(例如监督学习算法)之前,尝试使用降维算法来减少训练数据维数通常是一个好主意。 它将运行得更快,数据将占用更少的磁盘和内存空间,并且在某些情况下它也可能表现得更好。

异常检测也是一项无监督任务。例如,检测异常的信用卡交易以防止欺诈、发现制造缺陷,或者在将数据输入另一个学习算法之前自动从数据集中删除异常值。 系统在训练期间显示的大部分是正常实例,因此它学会识别它们; 然后,当它看到一个新实例时,它可以判断它是否看起来像正常实例,或者是否可能存在异常。

一个非常相似的任务是新颖性检测:它的目的是检测看起来与训练集中的所有实例不同的新实例。 这需要有一个非常“干净”的训练集, 您希望算法检测的任何实例。 例如,如果您有数千张狗的图片,其中 1% 代表吉娃娃,那么新颖性检测算法不应将吉娃娃的新图片视为新颖性。另一方面,异常检测算法可能会认为这些狗非常罕见,并且与其他狗如此不同,因此它们可能会将它们归类为异常(无意冒犯吉娃娃)。

(异常检测)

现实生活中机器学习的具体示例(Machine Learning 研习之二),人工智能(AI),机器学习,人工智能,监督学习,无监督,半监督,自我监督,强化学习

关联规则学习(association rule learning)是一个常见的无监督任务,其目标是挖掘大量数据并发现属性之间有趣的关系。 例如,假设您拥有一家超市。 在销售日志上运行关联规则可能会发现购买烧烤酱和薯片的人也倾向于购买牛排。 因此,您可能希望将这些物品彼此靠近放置。

半监督学习(Semi-supervised learning)

由于标记数据通常既耗时又昂贵,因此您通常会有大量未标记的实例,而很少有标记的实例。 一些算法可以处理部分标记的数据。 这称为半监督学习

现实生活中机器学习的具体示例(Machine Learning 研习之二),人工智能(AI),机器学习,人工智能,监督学习,无监督,半监督,自我监督,强化学习

图中,具有两个类(三角形和正方形)的半监督学习:未标记的示例(圆圈)有助于将新实例(十字)分类为三角形类而不是正方形类,即使它更接近标记的正方形

例如,一些照片托管服务(Google Photos),将照片上传到该服务后,它会自动识别出同一个人 A 出现在照片 1、5 和 11 中,而另一个人 B 出现在照片 2、5 和 7 中。这是算法的无监督部分(聚类)。 现在系统需要的只是您告诉它这些人是谁。 只需为每个人添加一个标签,它就能为每张照片中的每个人命名,这对于搜索照片很有用。

大多数半监督学习算法是无监督监督算法的组合。 例如,可以使用聚类算法将相似的实例分组在一起,然后可以用其聚类中最常见的标签来标记每个未标记的实例。 一旦整个数据集标记,就可以使用任何监督学习算法。

自我监督学习 (Self-supervised learning)

机器学习的另一种方法实际上涉及从完全未标记数据集生成完全标记数据集。 同样,一旦整个数据集标记,就可以使用任何监督学习算法。 这种方法称为自我监督学习。 例如,如果您有大量未标记图像的数据集,则可以随机屏蔽每个图像的一小部分,然后训练模型来恢复原始图像。 在训练过程中,蒙版图像用作模型的输入原始图像用作标签

(左图作为 输入,右图是 输出)

现实生活中机器学习的具体示例(Machine Learning 研习之二),人工智能(AI),机器学习,人工智能,监督学习,无监督,半监督,自我监督,强化学习

生成的模型本身可能非常有用,例如,修复损坏的图像或从图片中删除不需要的对象。 但通常情况下,使用自我监督学习训练的模型并不是最终目标。 您通常需要针对稍微不同的任务(您真正关心的任务)调整和微调模型。

假设您真正想要的是有一个宠物分类模型:给定任何宠物的图片,它会告诉您它属于什么物种。 如果您有大量未标记的宠物照片数据集,则可以首先使用自我监督学习来训练图像修复模型。 一旦表现良好,它应该能够区分不同的宠物种类:当它修复一张脸部被遮住的猫的图像时,它必须知道不要添加狗的脸。

假设您的模型架构允许(大多数神经网络架构都允许),那么就可以调整模型,使其预测宠物物种而不是修复图像。 最后一步 包括在标记``````数据集上微调模型:模型已经知道猫、狗和其他宠物物种的样子,因此只需要这一步,以便模型可以学习它已经知道的物种与我们期望从中获得的标签之间的映射。

将知识从一项任务迁移到另一项任务称为迁移学习,它是当下机器学习中最重要的技术之一,特别是在使用深度神经网络(即由多层神经元组成的神经网络)时。

有些人认为自监督学习无监督学习的一部分,因为它处理完全未标记数据集。 但自我监督学习在训练过程中使用(生成的)标签,因此在这方面它更接近监督学习无监督学习通常用于处理聚类降维异常检测等任务,而自我监督学习则专注于与监督学习相同的任务:主要是分类回归。 简而言之,最好将自我监督学习视为一个单独的类别。

强化学习(Reinforcement learning )

强化学习是一种非常不同的机器学习学习系统在本文中称为代理,可以观察环境、选择和执行操作,并获得回报(或以负奖励形式进行惩罚)。 然后,它必须自行学习什么是最好的策略(称为策略),以便随着时间的推移获得最大的回报。 策略定义了代理在给定情况下应该选择什么操作。

现实生活中机器学习的具体示例(Machine Learning 研习之二),人工智能(AI),机器学习,人工智能,监督学习,无监督,半监督,自我监督,强化学习

例如,许多机器人采用强化学习算法来学习如何行走。 DeepMindAlphaGo程序也是强化学习的一个很好的例子:它在 2017 年 5 月的围棋比赛中击败了当时世界排名第一的柯洁,登上了新闻头条。 它通过分析数百万场比赛,然后与自己进行许多比赛来了解其获胜策略。 请注意,在与冠军的比赛中学习被关闭;AlphaGo只是应用了它学到的策略。文章来源地址https://www.toymoban.com/news/detail-599857.html

笔者站点:秋码记录

到了这里,关于现实生活中机器学习的具体示例(Machine Learning 研习之二)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 机器学习 深度学习资料 资源machine learning

    机器学习 深度学习资料 资源machine learning

    Kaggle入门,看这一篇就够了 - 知乎 (zhihu.com) https://zhuanlan.zhihu.com/p/25686876 day1-1.什么是机器学习_哔哩哔哩_bilibili day1-1.什么是机器学习是10天学会机器学习从入门到深度学习的第1集视频,该合集共计62集,视频收藏或关注UP主,及时了解更多相关视频内容。 https://www.bilibili.com

    2024年02月21日
    浏览(14)
  • 应用机器学习的建议 (Advice for Applying Machine Learning)

    应用机器学习的建议 (Advice for Applying Machine Learning)

    问题: 假如,在你得到你的学习参数以后,如果你要将你的假设函数放到一组 新的房屋样本上进行测试,假如说你发现在预测房价时产生了巨大的误差,现在你的问题是要想改进这个算法,接下来应该怎么办? 解决思路: 一种办法是使用更多的训练样本。具体来讲,也许你

    2024年01月25日
    浏览(12)
  • 机器学习在网络安全领域的应用 Demystifying Cybersecurity with Machine Learning

    作者:禅与计算机程序设计艺术 什么是机器学习(Machine Learning)?又是如何应用在网络安全领域呢?本文将详细阐述其定义、分类及历史沿革,同时介绍一些机器学习的基本概念和技术,帮助企业界更好地理解和掌握机器学习在网络安全领域的应用。通过相关案例实践,全

    2024年02月06日
    浏览(11)
  • 选择和训练模型(Machine Learning 研习之十一)

    选择和训练模型(Machine Learning 研习之十一)

    当您看到本文标题时,不禁感叹,总算是到了 训练模型 这一节了。 是啊,在之前的文章中,我们对数据进行了探索,以及对一个训练集和一个测试集进行了采样,也编写了一个 预处理 管道来自动清理,准备您的数据用于 机器学习 算法,然而现在,我们可以选择并训练模型

    2024年01月18日
    浏览(9)
  • 深度学习实战56-基于VR虚拟现实眼镜与计算机视觉远程操控机器人,实现远程协助独居老人生活起居

    深度学习实战56-基于VR虚拟现实眼镜与计算机视觉远程操控机器人,实现远程协助独居老人生活起居

    大家好,我是微学AI,今天给大家介绍一下深度学习实战56-基于VR虚拟现实眼镜与计算机视觉远程操控机器人,实现远程协助独居老人生活起居,在信息科技飞速发展的当下,我们面临着一个重大社会问题——老龄化。越来越多的老年人选择独自生活,而他们往往因为身体原因

    2024年02月08日
    浏览(16)
  • Azure Machine Learning - 聊天机器人构建

    Azure Machine Learning - 聊天机器人构建

    本文介绍如何部署和运行适用于 Python 的企业聊天应用示例。 此示例使用 Python、Azure OpenAI 服务和 Azure AI 搜索中的检索扩充生成(RAG)实现聊天应用,以获取虚构公司员工福利的解答。 关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理

    2024年01月19日
    浏览(15)
  • 【机器学习】强化学习(六)-DQN(Deep Q-Learning)训练月球着陆器示例

    【机器学习】强化学习(六)-DQN(Deep Q-Learning)训练月球着陆器示例

    概述 Deep Q-Learning(深度 Q 学习)是一种强化学习算法,用于解决决策问题,其中代理(agent)通过学习在不同环境中采取行动来最大化累积奖励。Lunar Lander 是一个经典的强化学习问题,其中代理的任务是控制一个着陆舱在月球表面着陆,最小化着陆过程中的燃料消耗。 以下

    2024年01月25日
    浏览(14)
  • [machine Learning]强化学习

    [machine Learning]强化学习

    强化学习和前面提到的几种预测模型都不一样,reinforcement learning更多时候使用在控制一些东西上,在算法的本质上很接近我们曾经学过的DFS求最短路径. 强化学习经常用在一些游戏ai的训练,以及一些比如火星登陆器,月球登陆器等等工程领域,强化学习的内容很简单,本质就是获取

    2024年02月09日
    浏览(11)
  • [Machine Learning] 领域适应和迁移学习

    在机器学习中,我们的目标是找到一个假设或模型,它可以很好地描述或预测数据。当我们基于训练集训练模型时,我们的目的是让模型能够捕获到数据中的主要模式。然而,为了确保模型不仅仅是对训练数据进行记忆,而是真正理解了数据的结构,我们需要在测试集上评估

    2024年02月08日
    浏览(11)
  • 【Machine Learning 系列】一文带你详解什么是强化学习(Reinforcement Learning)

    【Machine Learning 系列】一文带你详解什么是强化学习(Reinforcement Learning)

    机器学习主要分为三类:有监督学习、无监督学习和强化学习。在本文中,我们将介绍强化学习(Reinforcement Learning)的原理、常见算法和应用领域。 强化学习(Reinforcement Learning)是机器学习中一种重要的学习范式,其目标是通过与环境的交互来学习如何做出最优的决策。 强化

    2024年02月14日
    浏览(12)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包