PX4无人机调参

这篇具有很好参考价值的文章主要介绍了PX4无人机调参。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

PX4 1.13.2
日志分析软件:flight review
https://logs.px4.io/

一、滤波参数

产生震动的原因:
1,桨叶损坏、动平衡差
2,电机桨座不垂直,电机动平衡差
3,机架刚性不足
4,部件松动

降低震动的方法:
软件滤波:调低通滤波或者陷波滤波器参数
硬件减震:调减震球的软度或者加配重

调参时可以用自稳模式飞行
在调滤波器参数之前,可以先大致调一下PID的参数,角度率环的P和D不要设置的太高,能飞并且没有明显超调和振荡就可以
通常默认PID参数就可以

建议先调完滤波参数再精调PID,因为如果传感器噪声较大且没有被滤掉的话,会导致电机输出噪声大,导致下面的现象

1电机和电调可能会变热,甚至损坏。
2续航时间变少,因为电机不断改变速度。
3可见的随机小抽搐。
此时只调PID很难达到理想的控制效果。

PX4里面可以调整低通滤波器的截止频率参数来过滤掉高频噪声。截止频率越小,过滤的越彻底,但是带来的控制延时越大。截止频率越大,延时越小,但是会使噪声变大。

延时会影响控制效果。如果控制延时较大,则相应的PID的P项就不能设置的太大。同样的PID参数,低延时的飞机可能飞行很好,延时大的飞机可能直接发散,只能调小PID才能飞起来,相应的控制效果也会变差。影响延时的因素如下:

1.机身较软,或者安装有减震板(这相当于硬件滤波)
2.软件上的低通滤波
3.PX4固件从数据读取到控制输出的计算延时
4.陀螺仪的最大输出频率,(使用参数IMU_GYRO_RATEMAX配置)。较高的速率减少了延迟,但可能会占用其他进程计算资源。仅建议使用STM32H7处理器或更新处理器的控制器使用4 kHz或更高频率(2 kHz值接近功能较差处理器的极限)。
5.与使用AUX引脚相比,IO芯片(MAIN引脚)增加了约5.4毫秒的延迟。为避免IO延迟,请禁用SYS_USE_IO并将电机连接到AUX引脚。
6.PWM输出信号:启用Dshot或One Shot以减少延迟。
7.执行器的控制延时,一般小轴距飞机的电机相应快,大轴距飞机的电机KV低,响应慢。因此大轴距的飞机PID不能太大。

滤波器参数
陀螺仪数据的陷波滤波器,用于滤除窄带噪声,例如桨叶频率处的谐波。可以使用IMU_GYRO_NF0_BW和IMU_GYROC_NF0_FRQ配置此滤波器。

陀螺仪传感器数据的低通滤波器。可以使用IMU_GYRO_CUTOFF参数进行配置。

陀螺仪D项上的一个单独的低通滤波器。D项最容易受到噪声的影响,而稍微增加的延迟不会对性能产生负面影响。因此,D项具有可单独配置的低通滤波器IMU_DGYRO_CUTOFF。

电机输出(MOT_SLEW_MAX)上的滑动滤波器。一般不使用。

调参前需要配置日志记录参数:SDLOG_PROFILE ,勾选High rate。
调参数IMU_GYRO_CUTOFF。
看陀螺仪数据的FFT频谱图
以下图为例,在40HZ以后的噪声比较多,可以设置IMU_GYRO_CUTOFF为35。
px4自动调参,PX4实战之旅,无人机,单片机,stm32调参数IMU_DGYRO_CUTOFF。
看角加速度的FFT图
以下图为例,在40Hz以后有一个噪声高峰,可以设置IMU_DGYRO_CUTOFF为35
px4自动调参,PX4实战之旅,无人机,单片机,stm32
调参数IMU_ACCEL_CUTOFF。
看加速度数据的FFT图。
以下图为例,在35Hz以后的振动比较大,可以设置IMU_ACCEL_CUTOFF为30
px4自动调参,PX4实战之旅,无人机,单片机,stm32调完参数可以看actuator_control的FFT,查看控制输出的噪声是否在可接受的范围。
除了软件上的滤波,还需要在硬件上减少振动,例如飞控安装减震,飞机上的所有部件都安装牢固,桨叶动平衡。机架尽量用强度高,轴距小的的机架,电机用高KV值电机(高频振动更好滤除)

陷波滤波器调参
有的时候FFT在一个较低的频率处有个尖峰,如果想用低通滤波将其滤除的话,需要将截止频率设置的很低,会使延时增大,此时可以通过陷波滤波器将其滤除。
需要注意的是,这种尖峰可能是由于飞机部件松动引起的振动,加固飞机可能比调滤波参数更有效果
px4自动调参,PX4实战之旅,无人机,单片机,stm32上图需要设置两个陷波滤波器,上图的IMU_GYRO_CUTOFF可以设置为120.

第一个:
频率参数IMU_GYRO_NF0_FRQ设置为20
陷波区间IMU_GYRO_NF0_BW 设置为10
第二个:
频率参数IMU_GYRO_NF0_FRQ设置为26.5
陷波区间IMU_GYRO_NF0_BW 设置为2

陷波滤波后的效果如下:
px4自动调参,PX4实战之旅,无人机,单片机,stm32

一般穿越机的IMU_GYRO_CUTOFF可以设置为120,IMU_DGYRO_CUTOFF可以设置为50到80
大的机架就根据FFT具体设置。

二、PID参数

自动调参

如果使用自动调参,需要使用新版的QGC地面站
PX4自动调参可以用hold模式调参,先起飞,然后切换到hold模式,调角速率环的话,点击下图的Autotune,飞机会自动进行roll/pitch/yaw角速率PID的调整。调整期间可以看到飞机会自动执行一些动作。px4自动调参,PX4实战之旅,无人机,单片机,stm32
调整完后,可以看到地面站提示降落飞机,自动调参的进度条提示wait for disarm,此时降落飞机
px4自动调参,PX4实战之旅,无人机,单片机,stm32
降落后可以看到地面站提示Autotune successful,说明调参成功。
px4自动调参,PX4实战之旅,无人机,单片机,stm32
角度环的自动调参同角速率环

手动调参

首先调角速率环,然后姿态环,再速度环,最后位置环。

角速率环

PX4角速率环PID流程如下
px4自动调参,PX4实战之旅,无人机,单片机,stm32
基于上图,有两种调参形式

1.并行形式
相当于K取常数
px4自动调参,PX4实战之旅,无人机,单片机,stm32
2.标准形式
相当于P取常值,这种形式在数学上等同于并行形式,但主要优点是它将比例增益调谐与积分和导数增益解耦。这意味着,通过利用具有类似尺寸/惯性的无人机的增益,并简单地调整K增益,就可以很容易地调整新飞机,使其正常飞行。
px4自动调参,PX4实战之旅,无人机,单片机,stm32
在调角速率PID时可以在自稳/特技模式下飞行,特技模式能更容易的看出调参效果,但更难操控,新手建议用自稳模式。
一开始可以把roll/pitch的PID设置成一样,等调的差不多了,然后再对roll和pitch的PID单独细调,如果飞机是对称的,则roll和pitch的PID一样就可以了。yaw的调参方法和roll/pitch类似,但是yaw的D项一般为0.

P项调节
将角速率环的I和D都置0,K置为1,然后调节P项,从小到大开始调。

P项过高:高频振荡
如下图,红色是当前角速率,绿色是期望角速率,大概以10Hz频率振荡

px4自动调参,PX4实战之旅,无人机,单片机,stm32

P项过低:对操纵反映迟缓,在特技模式下可以看到姿态的漂移。
如下图,红色是当前角速率,绿色是期望角速率,可以看到当前角速率曲线的相位明显滞后于期望的角速率
px4自动调参,PX4实战之旅,无人机,单片机,stm32

每次增加20-30%的增益,最终微调时减少到5-10%。
较好的P如下图,红色的为期望角速度,蓝色为当前角速度。相应较快,且没有明显的超调和振荡(两者还存在较大的静差,这是由于现在的I项为0)
px4自动调参,PX4实战之旅,无人机,单片机,stm32
I项调节
调好P后,就可以调节I
I项过高:低频振荡
如下图,红色是当前角速率,蓝色是期望角速率,几乎没有静差,但过高的I也会导致振荡
px4自动调参,PX4实战之旅,无人机,单片机,stm32I项过低:静差较大,如下图,红色是当前姿态,蓝色是期望姿态
px4自动调参,PX4实战之旅,无人机,单片机,stm32较好的I效果如下,没有振荡,也没有明显的静差。
px4自动调参,PX4实战之旅,无人机,单片机,stm32D项调节
D项的主要作用是抑制超调,但不宜过大,因为会放大噪声

D项过大:电机会发烫,并且电机会抽搐(听声音就是高频的忽高忽低声音),并且对操纵的反映比较迟钝。
可以看到电机的输出变化非常剧烈。
px4自动调参,PX4实战之旅,无人机,单片机,stm32D项过小:在阶跃输入后会出现超调,例如在自稳模式猛打杆后立刻将杆回中,可以看到飞机来会振荡几次后才恢复水平。此时可以调大D,直到飞机能够直接恢复水平而没有明显振荡。

姿态环

姿态环只有比例项,调参比较简单,如果P太小,操纵会比较迟钝,P太大也会出现振荡或超调,一般默认值就可以用。文章来源地址https://www.toymoban.com/news/detail-608870.html

到了这里,关于PX4无人机调参的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • px4+vio实现无人机室内定位

    px4+vio实现无人机室内定位

    文章主要讲述px4 如何利用vins_fusion里程计数据实现在室内定位功能。 文章基于以下软、硬件展开。 硬件 软件 机载电脑: Intel NUC 系统:Ubuntu 20.04 相机: Intel Realsense D435i ros:noetic 飞控:Pixhawk 2.4.8 固件:PX4 1.14.0 完整vins_to_mavros 功能包地址: https://github.com/rotorcraftman/px4ctr

    2024年02月03日
    浏览(11)
  • 无人机/飞控--ArduPilot、PX4学习记录(2)

    无人机/飞控--ArduPilot、PX4学习记录(2)

    这是一篇碎碎念,零零碎碎的记录了环境配置过程, 仅供本人记录学习历程和参考。 (记录的挺乱的,但是文章链接里的博客写的是真好) 本章主要完成的目标 : 安装PX4 并 成功运行出3D无人机界面。 参考文章: 搭建PX4环境: PX4/Pixhawk - 编译环境搭建_pix4 yu pixhawk-CSDN博客 使

    2024年03月21日
    浏览(39)
  • PX4学习笔记——无人机以及QGC操作

    PX4学习笔记——无人机以及QGC操作

    官方教程链接:https://docs.qgroundcontrol.com/master/en/SetupView/SetupView.html 电脑先打开QGC,进入Vehicle Setup,点击Firmware。无人机飞控使用USB线连接电脑,然后选择烧录的.px4程序(可以是官方的,也可以是自己编译生成的)。 点击Airframe,如果无人机为四旋翼,则点击 Generic Quadcopter

    2024年02月11日
    浏览(12)
  • 无人机/飞控--ArduPilot、PX4学习记录(5)

    无人机/飞控--ArduPilot、PX4学习记录(5)

    这几天看dronekit,做无人机失控保护。 PX4官网上的经典案例,我做了很多注解,把代码过了一遍。 无人机具体执行了:  先起飞,飞至正上空10m-向北移动10m-向东移动10m-向南移动10m-向西移动10m-回到初始起飞点(即home点),降落。 具体执行之前,要打开JMAVSim,接下来会在JMAV

    2024年04月15日
    浏览(56)
  • 【PX4仿真】使用PX4+Gazebo+MAVROS+ROS进行无人机仿真中提高IMU消息频率的方法

    在无人机仿真中,IMU(惯性测量单元)消息频率对于路径规划和感知的仿真至关重要。然而,在使用PX4+Gazebo+MAVROS+ROS进行仿真时,可能会遇到频率受限的情况。本文将介绍如何提高IMU消息频率。 通过以下命令可以查看到IMU消息的发布频率 通常情况下固定在50Hz。 然而,通过

    2024年04月14日
    浏览(85)
  • 【PX4-AutoPilot教程-TIPS】PX4控制无人机在Gazebo中飞行时由于视角跟随无人机在画面中心导致视角乱晃的解决方法

    【PX4-AutoPilot教程-TIPS】PX4控制无人机在Gazebo中飞行时由于视角跟随无人机在画面中心导致视角乱晃的解决方法

    无人机在Gazebo中飞行时,无人机始终处于画面中央,会带着视角乱晃,在Gazebo中进行任何操作视角都无法固定。 观察Gazebo左侧World栏GUI选项,发现有一个track_visual项,这个是Gazebo中的跟随视角,跟踪目标是无人机iris,但是手动点击无法取消,设置Gazebo使用FOLLOW选项跟随其他目

    2024年02月22日
    浏览(41)
  • ubuntu搭建PX4无人机仿真环境(4) —— 仿真环境搭建

    ubuntu搭建PX4无人机仿真环境(4) —— 仿真环境搭建

    前言 在搭建之前,需要把 ROS、MAVROS、QGC 等基础环境安装配置完成。大家可以参考我之前的教程 本次安装是以 px4 v1.13.2 为例。 我的配置如下: 虚拟机 Ubuntu 18.04 (运行内存 4G、硬盘内存 80G) 、ROS melodic 、最新版 QGC 建议安装之前可以先看看这个 👉 ubuntu搭建PX4无人机仿真环境

    2024年02月15日
    浏览(46)
  • (最新)ubuntu搭建PX4无人机仿真环境(2) —— MAVROS安装

    (最新)ubuntu搭建PX4无人机仿真环境(2) —— MAVROS安装

    MAVROS是一个ROS(Robot Operating System)软件包 , 有了它就可以让ROS与飞控通信。这次安装是以ubuntu 18.04 (ROS Melodic)为例,也适用于其他版本 。安装之前确保 ROS 安装成功,没安装的可以看我仿真系列教程。 (注:安装方式有二进制安装和源码安装两种方式,源码安装需要从Git

    2024年02月09日
    浏览(61)
  • (最新)ubuntu搭建PX4无人机仿真环境(4) —— 仿真环境搭建

    (最新)ubuntu搭建PX4无人机仿真环境(4) —— 仿真环境搭建

    前言 在搭建之前,需要把 ROS、MAVROS、QGC 等基础环境安装配置完成。大家可以参考我之前的教程 本次安装是以 px4 v1.13.2 为例。 我的配置如下: 虚拟机 Ubuntu 18.04 (运行内存 4G、硬盘内存 80G) 、ROS melodic 、最新版 QGC 建议安装之前可以先看看这个 👉 ubuntu搭建PX4无人机仿真环境

    2024年02月09日
    浏览(45)
  • ROS-基于PX4的无人机SLAM建图(Cartographer)仿真

    ROS-基于PX4的无人机SLAM建图(Cartographer)仿真

    首先在电脑上安装好Ubuntu系统和ROS系统,我安装的是Ubuntu18.04和ROS Melodic,不同的Ubuntu版本对应不同的ROS版本 ROS发布日期 ROS版本 停止支持日期 对应Ubuntu版本 2018年5月23日 ROS Melodic Morenia 2023年5月 Ubuntu 18.04 2016年5月23日 ROS Kinetic Kame 2021年4月 Ubuntu 16.04 (Xenial) Ubuntu 15.10 (Wily) 201

    2024年02月15日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包