第16节:R语言医学分析实例:肺切除手术的Apriori关联规则分析

这篇具有很好参考价值的文章主要介绍了第16节:R语言医学分析实例:肺切除手术的Apriori关联规则分析。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

关联规则

肺切除手术的Apriori关联规则分析。

分析的目的是确定患有肺癌并需要接受肺切除术的患者的共病症状。 了解哪些症状是共病的可以帮助改善患者护理和药物处方。 分析类型是关联规则学习,通过探索变量之间的关联或频繁项集,尝试在大型数据集中找到见解和隐藏关系(Han、Kamber、Pei,2011)。 一个例子可能是,一个吸烟的人(lhs,先行词)经常伴有咳嗽和虚弱的症状(rhs,后继词)。

该项目涉及使用 R 检查数据集。 我的分析涉及创建 Apriori 关联规则学习,以帮助理解许多变量如何一起发生,而仅通过查看数据集很难做到这一点。

完整的报告可以在文件“Apriori Association Rules Assignment.pdf”中找到。 该报告显示了我的分析的完整细分,包括问题识别、动机、数据探索、数据准备、规则、结果和解释。 还包括表格和可视化。

R 脚本包含在文件“MHunfalvay_Assignment1.R”中。 有关如何使用该程序的说明作为注释包含在 R 文件中。 打开文件后,请在执行代码之前仔细阅读说明,以确保程序正确运行。文章来源地址https://www.toymoban.com/news/detail-616378.html

源码


# Set working directory and read the data
setwd("/Users/melissahunfalvay/Documents/HUN/My Professional Development/Machine Learning Data 630/Assignments/Assignment 1") 
# display the file names in the current working directory
dir()
#Use the read.csv comma

到了这里,关于第16节:R语言医学分析实例:肺切除手术的Apriori关联规则分析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 数据挖掘(一)使用 Apriori 算法进行关联分析

    数据挖掘(一)使用 Apriori 算法进行关联分析

    关联分析是一种在大规模数据集中寻找有趣关系的任务。 这些关系可以有两种形式: 频繁项集(frequent item sets): 经常出现在一块的物品的集合。 关联规则(associational rules): 暗示两种物品之间可能存在很强的关系。 关联分析(关联规则学习): 从大规模数据集中寻找物品间的

    2024年02月09日
    浏览(43)
  • Python数据分析案例15——超市零售购物篮关联分析(apriori)

    Python数据分析案例15——超市零售购物篮关联分析(apriori)

    啤酒和纸尿裤的故事大多数人都听说过,纸尿裤的售卖提升了啤酒的销售额。 关联分析就是这样的作用,可以研究某种商品的售卖对另外的商品的销售起促进还是抑制的作用。 案例背景 本次案例背景是超市的零售数据,研究商品之间的关联规则。使用的自然是最经典的apr

    2023年04月15日
    浏览(13)
  • 机器学习:基于Apriori算法对中医病症辩证关联规则分析

    机器学习:基于Apriori算法对中医病症辩证关联规则分析

    作者:i阿极 作者简介:Python领域新星作者、多项比赛获奖者:博主个人首页 😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞👍收藏📁评论📒+关注哦!👍👍👍 📜📜📜如果有小伙伴需要数据集和学习交流,文章下方有交流学习区!一起学习进步!💪 大家好,我

    2024年02月06日
    浏览(55)
  • 【海量数据挖掘/数据分析】 之 关联规则挖掘 Apriori 算法 (数据集、事务、频繁项集、关联规则、支持度、置信度)

    【海量数据挖掘/数据分析】 之 关联规则挖掘 Apriori 算法 (数据集、事务、频繁项集、关联规则、支持度、置信度)

    目录 【海量数据挖掘/数据分析】 之 关联规则挖掘 Apriori 算法 (数据集、事务、频繁项集、关联规则、支持度、置信度) 一、 关联规则挖掘简介 二、 数据集 与 事务 ( Transaction ) 概念 三、项 ( Item ) 概念 四、项集 ( Item Set ) 概念 五、频繁项集 六、数据集、事物、项、项集

    2024年02月05日
    浏览(48)
  • Apriori关联规则挖掘算法函数

    Apriori关联规则挖掘算法函数

    假设有以下《超市商品购买.txt》数据集,每行代表一个顾客在超市的购买记录: I1: 西红柿、排骨、鸡蛋、毛巾、水果刀 I2: 西红柿、茄子、水果刀、香蕉 I3: 鸡蛋、袜子、毛巾、肥皂、水果刀 I4: 西红柿、排骨、茄子、毛巾、水果刀 I5: 西红柿、排骨、酸奶 I6: 鸡蛋、茄子、酸

    2024年02月09日
    浏览(57)
  • 关联规则挖掘算法--Apriori算法

    关联规则挖掘算法--Apriori算法

    关联规则分析是数据挖掘中最活跃的研究方法之一,目的是在一个数据集中找到各项之间的关联关系,而这种关系并没有在数据中直接体现出来。Apriori算法 关联规则 学习的经典算法之一,是R.Agrawal和R.Srikartt于1944年提出的一种具有影响力的挖掘布尔关联规则挖掘频繁项集的

    2024年02月04日
    浏览(46)
  • 【商业挖掘】关联规则——Apriori算法(最全~)

    【商业挖掘】关联规则——Apriori算法(最全~)

    一、关联规则挖掘 二、Apriori-关联规则算法 三、Apriori算法分解—Python大白话式实现 步骤1: 外部库调用❀  步骤2: 数据导入❀ 步骤3: 数据处理❀   步骤4:输出所有Goodlist❀ 步骤5:项集重组❀ 步骤6:支持度扫描与输出 ❀ 步骤7:根据最小支持度阈值进行减枝叶❀ 步骤

    2024年01月25日
    浏览(47)
  • 关联规则及其Apriori算法实现(MATLAB)

    关联规则及其Apriori算法实现(MATLAB)

    你是否有过这样的经历:在刷抖音的时候,总是容易刷到自己比较感兴趣的领域,比如说你喜欢玩游戏、看电影、看美女,那么你刷到的视频往往就在这几个之间徘徊;当你进入淘宝、京东想看点东西的时候,你想买的东西正好在搜索框的推荐项;当你QQ音乐的喜欢里有《稻

    2024年02月04日
    浏览(44)
  • 利用python实现Apriori关联规则算法

    利用python实现Apriori关联规则算法

            大家可能听说过用于宣传数据挖掘的一个案例:啤酒和尿布;据说是沃尔玛超市在分析顾客的购买记录时,发现许多客户购买啤酒的同时也会购买婴儿尿布,于是超市调整了啤酒和尿布的货架摆放,让这两个品类摆放在一起;结果这两个品类的销量都有明显的增长

    2024年02月02日
    浏览(45)
  • 关联规则挖掘:Apriori算法的深度探讨

    关联规则挖掘:Apriori算法的深度探讨

    在本文中,我们深入探讨了Apriori算法的理论基础、核心概念及其在实际问题中的应用。文章不仅全面解析了算法的工作机制,还通过Python代码段展示了具体的实战应用。此外,我们还针对算法在大数据环境下的性能局限提出了优化方案和扩展方法,最终以独到的技术洞见进行

    2024年02月05日
    浏览(49)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包