序言
本文是GAN网络的原始论文,发表于2014年,我们知道,对抗网络是深度学习中,CNN基础上的一大进步; 它最大的好处是,让网络摆脱训练成“死模型”到固定场所处去应用,而是对于变化的场景,网络有一个自己的策略; 这是非常值得研究的课题。 本文记录了原始论文,作为长期参考系保存。
一、摘要
我们提出了一个通过对抗过程估计生成模型的新框架,其中我们同时训练两个模型:捕获数据分布的生成模型G,以及估计样本来自训练数据而不是G的概率的判别模型D。 G 的训练过程是最大化 D 出错的概率。 此框架对应于最小最大值双人游戏。 在任意函数 G 和 D 的空间中,存在一个唯一的解决方案,G 恢复训练数据分布,D 在任何地方都等于 1 2。 在G和D由多层感知器定义的情况下,整个系统可以通过反向传播进行训练。 在训练或生成样本期间,不需要任何马尔可夫链或展开的近似推理网络工作。 实验通过对生成的样本进行定性和定量评估,证明了该框架的潜力。文章来源:https://www.toymoban.com/news/detail-618214.html
二、概述
深度学习的前景是发现丰富的分层模型[2],这些模型表示人工智能应用中遇到的各种数据的概率分布,例如自然图像,包含语音的音频波形和自然语言语料库中的符号。 到目前为止,深度学习中最引人注目的成功涉及判别模型,通常是那些将高维、丰富的感官输入映射到类标签的模型[14,22]。 这些惊人的成功主要基于反向传播和辍学算法,使用分段线性单元[19,9,10],这些单元具有特别好的梯度。 深度生成模型的影响较小,因为难以近似最大似然估计和相关策略中出现的许多棘手的概率计算,并且由于难以在生成上下文中利用分段线性单元的优势。 我们提出了一种新的生成模型估计程序&文章来源地址https://www.toymoban.com/news/detail-618214.html
到了这里,关于【深度学习】生成对抗网络Generative Adversarial Nets的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!