基于MATLAB的三维数据插值拟合与三次样条拟合算法(附完整代码)

这篇具有很好参考价值的文章主要介绍了基于MATLAB的三维数据插值拟合与三次样条拟合算法(附完整代码)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

一. 三维插值

例题1

二. 高维度插值拟合

格式一

格式二

格式三

格式四

格式五

例题2

三. 单变量三次样条插值

例题3

例题4

四. 多变量三次样条插值

例题6


一. 三维插值

首先三维网格生成是利用meshgrid()函数,在MATLAB中调用格式如下:

[x,y,z]=meshgrid(x1,y1,z1)
% x1,y1,z1为这三维数据所需要的分割形式,均以向量形式给出
%返回的x,y,z为网格的数据生成,也是三维数组

三维插值运算,主要利用griddata()函数与interp()函数,如下:

griddata3()  %三维非网格形式的插值拟合
griddatan()  %n维非网格形式的插值拟合
interpn()    %N维网格数据的插值拟合

实际上,interp3()和interpn()调用格式与interp2()函数一致;

griddata3()和griddatan()调用格式与griddata()函数一致。

有关interp2()与griddata()函数可见之前的博客:

基于MATLAB的二维与三维插值拟合运算(附完整代码)_唠嗑!的博客-CSDN博客

基于MATLAB的数据插值运算:Lagrange与Hermite算法(附完整代码)_唠嗑!的博客-CSDN博客

例题1

通过函数V(x,y,z)来生成一些网格型样本点,试根据样本点进行拟合,并给出拟合误差。

matlab三维插值,MATLAB,matlab,多项式,数据拟合,算法与代码

解:

MATLAB代码如下:

clc;clear;

[x,y,z]=meshgrid(-1:0.2:1);
[x0,y0,z0]=meshgrid(-1:0.05:1);
V=exp(x.^2.*z+y.^2.*x+z.^2.*y).*cos(x.^2.*y.*z+z.^2.*y.*x);
V0=exp(x0.^2.*z0+y0.^2.*x0+z0.^2.*y0).*cos(x0.^2.*y0.*z0+z0.^2.*y0.*x0);

V1=interp3(x,y,z,V,x0,y0,z0,'spline');
err=V1-V0;
max(err(:))

运行结果:

ans =0.041862381154469

二. 高维度插值拟合

interpn()函数可实现一维、二维、三维和N维网格数据的插值。常用的有五种格式:

格式一

Vq=interpn(X1,X2,...,Xn,V,Xq1,Xq2,...,Xqn)

格式二

Vq=interpn(V,Xq1,Xq2,...,Xqn)

格式三

Vq=interpn(V)

样本值之间间隔分割一次

格式四

Vq=interpn(V,k)

将每个维度上样本值之间的间隔反复分割k次,形成优化网格,并在这些网格上返回插入值。这将在样本值之间生成个插入点

格式五

Vq=interpn(_,method,extrapval)

可以指定备选插值方法,包含:'linear','nearest','pchip','cubic','makima'或者'spline'。默认方法为'linear'。

例题2

自行选取数据,利用interpn()函数进行一维插值,二维插值与三维差值。

解:

(1)一维插值

MATLAB代码如下:

clc;clear;
x=[1 2 3 4 5];
v=[12 16 31 10 6];
xq=(1:0.1:5);
vq=interpn(x,v,xq,'cubic');
plot(x,v,'o',xq,vq,'-');
legend('Samples','Cubic Interpolation');

运行结果:

matlab三维插值,MATLAB,matlab,多项式,数据拟合,算法与代码

(2)二维插值

MATLAB代码如下:

clc;clear;
[X1,X2]=ndgrid(-5:1:5);
R=sqrt(X1.^2+X2.^2)+eps;
V=sin(R)./(R);
Vq=interpn(V,'cubic');
mesh(Vq);
size(V);
size(Vq);

 运行结果:

matlab三维插值,MATLAB,matlab,多项式,数据拟合,算法与代码

(3)三维插值

此例子将给定函数

MATLAB代码如下:

clc;clear;
[x,y]=ndgrid(-3:.6:3,-2:.4:2);
z=(x.^2-2*x).*exp(-x.^2-y.^2-x.*y);
[x1,y1]=ndgrid(-3:.2:3,-2:.2:2);
z1=interpn(x,y,z,x1,y1);
surf(x1,y1,z1),axis([-3,3,-2,2,-0.7,1.5])

 运行结果:

matlab三维插值,MATLAB,matlab,多项式,数据拟合,算法与代码

三. 单变量三次样条插值

给定样本点,平面上n个点,且满足。

S(x)为三次样条函数需要满足如下三个条件:

  1. ,即函数经过样本点
  2. S(x)在每个子区间matlab三维插值,MATLAB,matlab,多项式,数据拟合,算法与代码上为三次多项式,即matlab三维插值,MATLAB,matlab,多项式,数据拟合,算法与代码
  3. S(x)在整个区间上有连续的一阶以及二阶导数

在MATLAB中,定义一个三次样条函数类,如下:

S=csapi(x,y)

 上式子中为样本点。S返回样条函数对象的插值结果,其中就包含子区间点,各区间点三次多项式系数等等。

可以利用fnplt()绘制出插值结果,调用格式如下:

fnplt(S)

对给定的向量xp,可用fnval()函数进行计算,调用格式如下:

yp=fnval(S,xp)

由此式子得出的yp是xp上各点的插值结果。

例题3

以sin(x)产生的数据点为例子,进行三次样条插值运算。

解:

MATLAB代码如下:

clc;clear;
x0=[0,0.4,1,2,pi];
y0=sin(x0);
sp=csapi(x0,y0),fnplt(sp,':');
hold on,ezplot('sin(t)',[0,pi]);
plot(x0,y0,'o')
sp.coefs

运行结果:

sp = 

  包含以下字段的 struct:

      form: 'pp'
    breaks: [0 0.400000000000000 1 2 3.141592653589793]
     coefs: [4×4 double]
    pieces: 4
     order: 4
       dim: 1


ans =

  -0.162650313526554   0.007585653997624   0.996535644336825                   0
  -0.162650313526551  -0.187594722234240   0.924532017042179   0.389418342308651
   0.024435716847400  -0.480365286582031   0.523756011752416   0.841470984807897
   0.024435716847400  -0.407058136039832  -0.363667410869446   0.909297426825682

matlab三维插值,MATLAB,matlab,多项式,数据拟合,算法与代码

根据运算的结果,在(0.4000,1)区间内,插值多项式可以表示为如下:

matlab三维插值,MATLAB,matlab,多项式,数据拟合,算法与代码

例题4

自行选取函数f(x)的一些数据点,用三次样条插值的方法对这些数据进行拟合。

matlab三维插值,MATLAB,matlab,多项式,数据拟合,算法与代码

解:

MATLAB代码如下:

clc;clear;
x=0:.12:1;
y=(x.^2-3*x+5).*exp(-5*x).*sin(x);
sp=csapi(x,y);
fnplt(sp)
c=[sp.breaks(1:4)' sp.breaks(2:5)' sp.coefs(1:4,:),sp.breaks(5:8)'...
    sp.breaks(6:9)' sp.coefs(5:8,:)]

 运行结果:


c =

  列 1 至 7

                   0   0.120000000000000  24.739556929256214 -19.358812904771273   4.515070686988533                   0   0.480000000000000
   0.120000000000000   0.240000000000000  24.739556929256135 -10.452572410239041   0.937704449187296   0.305791530983672   0.600000000000000
   0.240000000000000   0.360000000000000   4.507107987633279  -1.546331915706831  -0.502164069926209   0.310548976552460   0.720000000000000
   0.360000000000000   0.480000000000000   1.913943736028591   0.076226959841147  -0.678576664630090   0.235810391177767   0.840000000000000

  列 8 至 12

   0.600000000000000  -0.240386219157313   0.765246704811441  -0.577599824871780   0.158786154419726
   0.720000000000000  -0.477388221775507   0.678707665914812  -0.404325300384630   0.100078340597694
   0.840000000000000  -0.455907214289051   0.506847906075627  -0.262058631745777   0.060507768093483
   0.960000000000000  -0.455907214289066   0.342721308931568  -0.160110325944914   0.035571534465187

matlab三维插值,MATLAB,matlab,多项式,数据拟合,算法与代码

四. 多变量三次样条插值

处理多个自变量的网格数据三次样条插值的格式如下:

S=csapi({x1,x2,...,xn},z)
%xi为自变量的网格标志
%z是网格数据的样本点
%得到的S是三次样条函数对象

例题5

用三次样条插值方法得出z函数网格数据的样条插值拟合,并绘制出曲面

解:

MATLAB代码如下:

clc;clear;

x0=-3:.6:3;
y0=-2:.4:2;
[x,y]=ndgrid(x0,y0);
%注意此处只能使用ndgrid,否则生成的z矩阵的顺序有问题

z=(x.^2-2*x).*exp(-x.^2-y.^2-x.*y);
sp=csapi({x0,y0},z);
fnplt(sp);

运行结果:

matlab三维插值,MATLAB,matlab,多项式,数据拟合,算法与代码

在MATLAB中,函数spline也可以进行三次样条数据插值,格式如下:

yy=spline(x,y,xx)

例题6

对离散分布在y函数曲线上的数据点进行样条插值计算。

解:

MATLAB代码如下:

clc;clear;

x=[0 2 4 5 8 12 12.8 17.2 19.9 20];
y=exp(x).*sin(x);
xx=0:.25:20;
yy=spline(x,y,xx);
plot(x,y,'o',xx,yy)

 运行结果:

matlab三维插值,MATLAB,matlab,多项式,数据拟合,算法与代码文章来源地址https://www.toymoban.com/news/detail-619467.html

到了这里,关于基于MATLAB的三维数据插值拟合与三次样条拟合算法(附完整代码)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 全面地介绍 将二维数据矩阵插值拟合为二维曲面方程——基于matlab

    全面地介绍 将二维数据矩阵插值拟合为二维曲面方程——基于matlab

    要利用matlab将二维数据矩阵拟合成一个二维曲面方程,首先,我们得明白什么是插值和拟合。下面,从对洋流数据的处理入手,先以一个基本的流程为例,进行问题的概述,然后介绍两种具体的方法。 根据已知的数据点,生成一个连续的函数,可以在任意位置求值。matlab 提

    2024年04月11日
    浏览(16)
  • 【运动规划算法项目实战】如何实现三次样条插值(附ROS C++代码)

    三次样条插值是一种广泛应用于数据拟合和插值的方法。它通过使用三次多项式在给定的一组数据点之间进行插值,以实现平滑的拟合效果。三次样条插值的优点是可以平滑地拟合给定的数据点,而不会产生震荡或振荡现象。 三次样条插值是机器人路径规划中常用的一

    2024年02月14日
    浏览(19)
  • 基于Matlab的插值问题(Lagrange插值法、三次插值多项式)

    基于Matlab的插值问题(Lagrange插值法、三次插值多项式)

    要求 1、 利用Lagrange插值公式 L n ( x ) = ∑ k = 0 n ( ∏ i = 0 , i ≠ k n x − x i x k − x i ) y k {L_n}(x) = sumlimits_{k = 0}^n {left( {prodlimits_{i = 0,i ne k}^n {frac{{x - {x_i}}}{{{x_k} - {x_i}}}} } right)} {y_k} L n ​ ( x ) = k = 0 ∑ n ​ ( i = 0 , i  = k ∏ n ​ x k ​ − x i ​ x − x i ​ ​ ) y k ​ 编写出

    2024年02月07日
    浏览(21)
  • 【MATLAB 数学建模】 插值方法 数据拟合

    一维插值是一种在给定有限数据点集合的情况下,通过构建一个函数来近似估计这些数据点之间的值。它基于假设,在相邻数据点之间存在某种连续性或平滑性。 一维插值常用于曲线拟合、曲线重建和数据补全等应用中。其中最简单的一种插值方法是线性插值,即通过连接相

    2024年02月08日
    浏览(17)
  • MATLAB 之 数据插值、曲线拟合和数值微分

    MATLAB 之 数据插值、曲线拟合和数值微分

    在工程测量和科学实验中,所得到的数据通常都是离散的。如果要得到这些离散点以外的其他点的数值,就需要根据这些已知数据进行插值。例如,测量得 n n n 个点的数据为 ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x n , y n ) (x_{1},y_{1}),(x_{2},y_{2}),dots ,(x_{n},y_{n}) ( x 1 ​ , y 1 ​

    2024年02月08日
    浏览(9)
  • 基于MATLAB的径向基函数插值(RBF插值)(一维、二维、三维)

    基于MATLAB的径向基函数插值(RBF插值)(一维、二维、三维)

    惯例声明:本人没有相关的工程应用经验,只是纯粹对相关算法感兴趣才写此博客。所以如果有错误,欢迎在评论区指正,不胜感激。本文主要关注于算法的实现,对于实际应用等问题本人没有任何经验,所以也不再涉及。 插值是一个工程中非常常见的扩展数据方法。通常数

    2024年02月11日
    浏览(10)
  • 曲线生成 | 图解三次样条曲线生成原理(附ROS C++/Python/Matlab仿真)

    🔥附C++/Python/Matlab全套代码🔥课程设计、毕业设计、创新竞赛必备!详细介绍全局规划(图搜索、采样法、智能算法等);局部规划(DWA、APF等);曲线优化(贝塞尔曲线、B样条曲线等)。 🚀详情:图解自动驾驶中的运动规划(Mo

    2024年01月22日
    浏览(9)
  • Matlab的插值与拟合

    Matlab的插值与拟合

    插值:在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。 拟合:拟合是指已知某函数的若干离散函数值,通过调整该函数中若干

    2024年02月03日
    浏览(9)
  • 【心电图信号压缩】ECG信号压缩与通过三次样条近似重建的ECG信号压缩研究(Matlab代码实现)

    【心电图信号压缩】ECG信号压缩与通过三次样条近似重建的ECG信号压缩研究(Matlab代码实现)

     💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 心电图

    2024年02月13日
    浏览(13)
  • matlab 矩阵处理方法:缩放、插值、拟合、分块...

    目录 1. 缩放矩阵尺寸 2. 对矩阵进行反距离权重插值填补nan值 3. 数据拟合 4. 数组大小超过限制(分块处理) 在MATLAB中,可以使用 imresize 函数对矩阵进行缩放尺寸操作。 imresize 函数用于调整图像或矩阵的尺寸,可以按比例缩小或放大矩阵。 其中: A 是原始矩阵或图像。 sca

    2024年02月11日
    浏览(10)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包