LabVIEW深度相机与三维定位实战(下)

这篇具有很好参考价值的文章主要介绍了LabVIEW深度相机与三维定位实战(下)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

‍‍🏡博客主页: virobotics的CSDN博客:LabVIEW深度学习、人工智能博主
🎄所属专栏:『LabVIEW深度学习实战』
🍻上期文章:『LabVIEW深度相机与三维定位实战(上)』
📰如觉得博主文章写的不错或对你有所帮助的话,还望大家多多支持呀! 欢迎大家✌关注、👍点赞、✌收藏、👍订阅专栏

前言

Hello,大家好,这里是virobotics。今天给大家分享在LabVIEW中实现深度相机与三维定位:立体匹配与ACV算法。关于双目相机基础支持可查看上一篇博文『LabVIEW深度相机与三维定位实战(上)』


一、立体匹配与ACV算法

1.1 立体匹配

  • 基本思路

    如上一篇博文所述,如果已知左右相机画面中的两个像素来源于空间中的同一个点,那么就可以通过视差来计算出该点到基线的距离(深度)。

    如果有一种算法:针对左目画面中的每一个像素,能够分别找到它们在右目画面中对应空间中同一点的像素(假如存在的话),那么就可以计算出单目画面中每一个点的深度,从而形成立体视觉。

  • 立体匹配的任务

    立体匹配的目标,就是从不同视点图像中找到匹配的对应点。该模型的输入为若干不同视角的相机采集的图像,输出是这些图像上的点的对应关系。

    立体匹配是目前机器视觉领域的一个难点,近年来不断有人发明或改良出新的方法,以求提高效率和准确性。本文接下来将介绍其中一种方法——ACV。

1.2 ACV算法

  • 简介
    该算法来源于今年(2022)发表于CVPR上的一篇论文:
    Attention Concatenation Volume for Accurate and Efficient Stereo Matching
    原文下载地址: https://arxiv.org/abs/2203.02146

    ACV,即 Attention Concatenation Volume,意为:注意力连接(代价)体。它是文章提出的一种新的立体匹配“代价体”的构建方法。

    “该方法利用相关线索生成注意力权重,以抑制冗余信息,增强连接体积中的匹配相关信息。为了产生可靠的注意力权重,本文提出了多级自适应补丁匹配,以提高不同视差下匹配成本的显著性,即使是无纹理区域。”

  • ACVNet网络结构

    如下图所示,首先通过CNN分别提取左右画面的特征图,然后上下“兵分两路”:
    1、下边将左右特征图,按照一定规律拼接,生成初始连接代价体(Concat volume);
    2、上边将(不同层的)左右特征图,进行多级自适应补丁匹配(MAPM),最终生成注意力权重 (Attention Weights);
    3、用注意力权重 对Concat volume进行过滤,以增强相关抑制冗余,得到注意力连接代价体(Attention concat volume);
    4、最后ACV通过一个代价聚合网络(Cost Aggregation),输出最终结果(Left画面每一点的视差预测)。
    LabVIEW深度相机与三维定位实战(下),LabVIEW深度学习实战,labview,人工智能,机器学习,pytorch,三维定位,深度相机,深度学习,原力计划

  • 初始连接代价体的构建
    给定一个尺寸为H×W×3的输入立体图像对,对于每个图像,我们通过CNN特征提取,分别得到左、右图像的一元特征图fl和fr。

    特征图的大小为Nc×H/4×W/4(Nc=32)。然后通过连接每个视差水平的fl和fr形成初始连接体,即为
    LabVIEW深度相机与三维定位实战(下),LabVIEW深度学习实战,labview,人工智能,机器学习,pytorch,三维定位,深度相机,深度学习,原力计划
    Cconcat 的尺寸为2Nc ×D/4×H/4×W/4 ,其中D为最大视差。

🔍 帮助理解:

1、左右特征图都是Nc通道。并且经过多次卷积之后,尺寸已经缩小为原来的1/4。那么原图最大视差D,就对应特征图的最大视差为D/4;

2、通俗地讲解拼接过程:
把Nc通道的右特征图的所有像素,沿X轴向右平移1个像素,然后拼接在Nc通道的左特征图的后面,得到第1组2Nc通道的拼接特征图。
平移2个像素拼接得到第2组、平移3个像素拼接得到第3组……直到平移D/4,一共D/4组2Nc通道的拼接特征图。因此Cconcat 的尺寸为2Nc ×D/4×H/4×W/4


3、这种连接体的构建,实际是在列举所有视差匹配的可能性。理想双目只在X方向有视差,即同源点必然位于左右特征图的同一条水平线上,且XL一定大于XR。因此我们对右侧特征图沿X向右平移1到D/4个单位,再分别与左侧特征图叠加,就能让所有同源点得到一次“左右重合”的机会。重合时对应的平移距离,反映了该点的视差大小,进而反映该点的深度。

  • 多级自适应补丁匹配(MAPM)
    从特征提取模块得到3个不同层次的特征图l1、l2、l3,其通道数分别为64、128、128。对于每一个处于特定水平的像素,我们利用一个具有预定尺寸和自适应学习权重的atrous patch来计算匹配成本。通过控制膨胀率,我们确保patch的范围与特征图层有关,同时在计算中心像素的相似度时保持相同的像素数量。然后,两个相应的像素的相似性是patch内相应像素之间的相关性的加权和。
    LabVIEW深度相机与三维定位实战(下),LabVIEW深度学习实战,labview,人工智能,机器学习,pytorch,三维定位,深度相机,深度学习,原力计划
    🔍 帮助理解:

1、虽然算法复杂,但是目的简单,就是在估计左右特征图上的两个点是空间同一点的可能性(权重);

2、估算可能性的方法,是选取该点及其周围点,参与加权计算。这个选取范围叫做patch,是个会膨胀的自适应范围。但无论怎么膨胀,参与计算的点数是恒定的9个,就是图中红色和橙色的点。白色的点是膨胀产生的空洞,不参与计算。

将l1、l2和l3的三级特征图连接起来,形成Nf个通道的单级特征图(Nf=320)。将Nf通道平均分成Ng组(Ng=40),前8组来自l1,中间16组来自l2,最后16组来自l3。不同级别的特征图不会相互干扰。我们把第g个特征组表示为 LabVIEW深度相机与三维定位实战(下),LabVIEW深度学习实战,labview,人工智能,机器学习,pytorch,三维定位,深度相机,深度学习,原力计划
,多级补丁匹配量Cpatch的计算方法为:
LabVIEW深度相机与三维定位实战(下),LabVIEW深度学习实战,labview,人工智能,机器学习,pytorch,三维定位,深度相机,深度学习,原力计划

  • 注意力权重过滤
    在得到注意权重A后,我们用它来消除初始连接代价体中的冗余信息,进而提高其表示能力。
    通道 i 处的注意力连接代价体(ACV)计算为:
    LabVIEW深度相机与三维定位实战(下),LabVIEW深度学习实战,labview,人工智能,机器学习,pytorch,三维定位,深度相机,深度学习,原力计划
    ⊙表示对应像素点乘,注意力权重 A 应用于初始连接代价体的所有通道的过滤。

  • 代价聚合与视差预测
    用一个预沙漏模块来处理ACV,它由4个3D卷积组成(包括批归一化、ReLU)、2个3D堆叠沙漏网络,堆叠在一个 encoder-decoder结构。

    由代价聚合获得3个输出,对于每个输出,使用2个3D卷积得到单通道4D volume,然后上采样并通过softmax转化为置信体。3个预测的视差图表示为d0、d1、d2。最终,预测值就是每一层视差与置信度乘积求和。(k表示视差层级,pk表示对应的置信度)
    LabVIEW深度相机与三维定位实战(下),LabVIEW深度学习实战,labview,人工智能,机器学习,pytorch,三维定位,深度相机,深度学习,原力计划


二、环境搭建

2.1 部署本项目时所用环境

  • 操作系统:Windows10
  • python:3.6及以上
  • LabVIEW:2018及以上 64位版本
  • AI视觉工具包:techforce_lib_opencv_cpu-1.0.0.98.vip
  • onnx工具包:virobotics_lib_onnx_cuda_tensorrt-1.0.0.16.vip【1.0.0.16及以上版本】

2.2 LabVIEW工具包下载及安装

  • AI视觉工具包下载与安装参考:
    https://blog.csdn.net/virobotics/article/details/123656523
  • onnx工具包下载与安装参考:
    https://blog.csdn.net/virobotics/article/details/124998746

三、LabVIEW实现ACVNet立体匹配

3.1 获取模型

项目中提供一个onnx格式的ACVNet模型,模型文件位于:“范例\acvnet_maxdisp192_sceneflow_240x320.onnx”

模型的输入为左右两张彩色图,大小均为 3240320,须归一化到(-1~1)之间。

最大视差为maxdisp = 192 。

模型的输出为3个层级下的,左图各个像素的视差预测。通常我们只取其中一个层级下的预测结果。

3.2 测试范例

  1. 打开“范例\ACVNet_main.vi”;

  2. 切换到程序框图,检查依赖的模型文件路径、左右图片路径是否正确。

  3. 切换到前面板,运行VI,观察输出结果。(本范例采用灰度图对预测结果进行后处理,灰度大小与该点的视差大小正相关)
    LabVIEW深度相机与三维定位实战(下),LabVIEW深度学习实战,labview,人工智能,机器学习,pytorch,三维定位,深度相机,深度学习,原力计划

  4. 修改图片路径,用上一篇博文采集的left.png和right.png图片作为输入,运行测试。
    LabVIEW深度相机与三维定位实战(下),LabVIEW深度学习实战,labview,人工智能,机器学习,pytorch,三维定位,深度相机,深度学习,原力计划


四、项目源码

如需源码,可在一键三连并订阅本专栏后评论区留下邮箱


总结

以上就是今天要给大家分享的内容,希望对大家有用。我是virobotics,我们下篇文章见~

如果文章对你有帮助,欢迎✌关注、👍点赞、✌收藏、👍订阅专栏

推荐阅读

LabVIEW图形化的AI视觉开发平台(非NI Vision),大幅降低人工智能开发门槛
LabVIEW图形化的AI视觉开发平台(非NI Vision)VI简介
LabVIEW AI视觉工具包OpenCV Mat基本用法和属性
手把手教你使用LabVIEW人工智能视觉工具包快速实现图像读取与采集

👇技术交流 · 一起学习 · 咨询分享,请联系👇文章来源地址https://www.toymoban.com/news/detail-624156.html

到了这里,关于LabVIEW深度相机与三维定位实战(下)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • Labview 实战 99乘法表

    Labview 实战 99乘法表

    基于新手小白,使用Labview实现99乘法表,敢于发表自己的一点方法,还请各位大侠放过! 如下: 运行效果如下: 思路为:将要显示出来的数据,全部转换为字符串形式,再塞入到数组中,拼接字符串,在整个打印出来; 外部使用的While循环,内部嵌套for循环,While循环显示

    2024年02月07日
    浏览(10)
  • 人工智能|深度学习——基于对抗网络的室内定位系统

    人工智能|深度学习——基于对抗网络的室内定位系统

    基于CSI的工业互联网深度学习定位.zip资源-CSDN文库 室内定位技术是工业互联网相关技术的关键一环。 该技术旨在解决于室外定位且取得良好效果的GPS由于建筑物阻挡无法应用于室内的问题 。实现室内定位技术,能够在真实工业场景下实时追踪和调配人员并做到对自动化生产

    2024年02月20日
    浏览(17)
  • 【labVIEW】学习记录

    【labVIEW】学习记录

    回到目录   labVIEW(Laboratory Virtual Instrument Engineering Workbench)是一款由美国国家仪器公司(National Instruments)开发的 可视化编程环境和开发平台 。LabVIEW适用于各种测量、控制和数据处理应用。它的图形化编程方式和丰富的功能使得工程师和科学家能够快速构建应用程序。

    2024年01月25日
    浏览(5)
  • LabVIEW编写上位机控制汇川PLC H5U和伺服运动,海康威视相机视觉对位,实现全面的自动化控制

    LabVIEW编写上位机控制汇川PLC H5U和伺服运动,海康威视相机视觉对位,实现全面的自动化控制

    LabVIEW编的上位机控制汇川PLCH5U和汇川伺服运动,海康威视相机视觉对位,LabVIEW通过网口控制汇川H5U和Ethercat伺服,LabVIEW需要装视觉 和DSC模块。 因给的是LabVIEW和PLC源码,项目里有LabVIEW上位机,PLC下位机,ethercat伺服,相机对位,涉及面比较全,这套学会的话,就可以接一般

    2024年04月14日
    浏览(16)
  • 【YOLOv8】实战三:基于LabVIEW TensorRT部署YOLOv8

    【YOLOv8】实战三:基于LabVIEW TensorRT部署YOLOv8

    ‍‍🏡博客主页: virobotics的CSDN博客:LabVIEW深度学习、人工智能博主 🎄所属专栏:『LabVIEW深度学习实战』 🍻上期文章: 【YOLOv8】实战二:YOLOv8 OpenVINO2022版 windows部署实战 📰如觉得博主文章写的不错或对你有所帮助的话,还望大家多多支持呀! 欢迎大家✌关注、👍点赞

    2024年02月07日
    浏览(12)
  • 【YOLOv5】LabVIEW+TensorRT的yolov5部署实战(含源码)

    【YOLOv5】LabVIEW+TensorRT的yolov5部署实战(含源码)

    ‍‍🏡博客主页: virobotics的CSDN博客:LabVIEW深度学习、人工智能博主 🎄所属专栏:『LabVIEW深度学习实战』 🍻上期文章: 手把手教你使用LabVIEW TensorRT实现图像分类实战(含源码) 📰如觉得博主文章写的不错或对你有所帮助的话,还望大家多多支持呀! 欢迎大家✌关注、

    2024年02月14日
    浏览(12)
  • YOLOX目标检测实战:LabVIEW+YOLOX ONNX模型实现推理检测(含源码)

    YOLOX目标检测实战:LabVIEW+YOLOX ONNX模型实现推理检测(含源码)

    目录 前言 一、什么是YOLOX 二、环境搭建 1、部署本项目时所用环境: 2、LabVIEW工具包下载及安装: 三、模型的获取与转化【推荐方式一】 1、方式一:直接在官网下载yolox的onnx模型 2、方式二:将标准模型pth转化为onnx(较为复杂) 3、获取onnx模型总结 四、LabVIEW实现YOLOX ONN

    2024年02月15日
    浏览(10)
  • 基于OpenCV的单目相机标定与三维定位

    基于OpenCV的单目相机标定与三维定位

           相机是产生图像数据的硬件,广泛应用于消费电子、汽车、安防等领域。围绕着相机衍生出一系列的研究与应用领域,包括传统的图像处理和基于深度学习的智能应用等。目前大火的自动驾驶中相机也是重要的硬件组成,如环视用鱼眼相机,adas用周视相机。    

    2024年02月09日
    浏览(16)
  • 【学习笔记】基于LabView构建学生信息存储读取系统

    【学习笔记】基于LabView构建学生信息存储读取系统

    声明 :以下所有操作均基于LabView2021完成。 最近在上LabView的相关课程,老师布置了一项课程作业-搭建一个学生信息管理系统,要求如下: 可以录入信息,并且录入的信息需要在前面板显示出来 可以查询已录入的信息 优化面板,做到简洁。 在完成过程发现晚上相关的教程比

    2024年02月04日
    浏览(9)
  • (六)人工智能应用--深度学习原理与实战--理解张量与运算图

    (六)人工智能应用--深度学习原理与实战--理解张量与运算图

    Tensorflow名称中的Tensor即张量,不仅仅是Tensorflow,几乎所有的深度学习平台都以张量为基本的数据结构。简单来说,张量就是多维数组,本质上是一种数据容器,它可以有任意维度,比如矩阵就是二维张量(二维数组)。 深度学习中使用张量来表示数据,计算图是由张量和张量

    2024年02月15日
    浏览(12)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包