【论文阅读】基于深度学习的时序预测——Non-stationary Transformers

这篇具有很好参考价值的文章主要介绍了【论文阅读】基于深度学习的时序预测——Non-stationary Transformers。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

系列文章链接
论文一:2020 Informer:长时序数据预测
论文二:2021 Autoformer:长序列数据预测
论文三:2022 FEDformer:长序列数据预测
论文四:2022 Non-Stationary Transformers:非平稳性时序预测
论文五:2022 Pyraformer:基于金字塔图结构的时序预测
论文六:2023 Crossformer:多变量时序预测
论文七:2023 LTSF-Linear:质疑transformer能力的线性预测模型

论文链接:https://arxiv.org/abs/2205.14415
github链接:https://github.com/thuml/Nonstationary_Transformers
参考解读:https://zhuanlan.zhihu.com/p/587665491

本文还是清华大学THUML实验室的论文,背景是在历史的研究中,大多数时序预测方法都是针对平稳型数据,但是在实际生产过程中,大部分数据其实没有那么强的平稳性,因此本文想针对这种非平稳型的数据进行模型优化;基于此,本文的主要贡献表现在一下几点:
【论文阅读】基于深度学习的时序预测——Non-stationary Transformers,时间序列分析与处理,论文阅读,深度学习,人工智能文章来源地址https://www.toymoban.com/news/detail-641679.html

  1. 序列平稳化:主要体现在数据预处理方面,包含两个阶段窗口归一化(Normalization)和反归一化(De-Normalization)。对于每个指标数据,在时间维度上对数据进行归一化处理,并且在对于每个点位而言,提取的是滑动窗口内的均值数据作为样本输入(称为实例归一化),数据&实例归一化能够提高数据的平稳性。但是该操作对于原始数据而言,造成了不可逆转的退化可能性,因此本文还构造了一个逆归一化的过程,恢复数据归一化丢失的信息,该结构可以封装在模型输入输出阶段,作为非平稳型数据的特殊处理;
  2. 去平稳化注意力机制:虽然反归一化的处理能够还原部分信息,但是由于在模型内部输入的是归一化后的数据,所以会导致模型学习到的还是较为平稳的注意力,因此本文设计了一种新的注意力机制;基于模型嵌入层(Embedding)和前向传播层(FFN)在时间维度的线性假设,在进行注意力机制计算时不仅会输入归一化的数据,还会将归一化时的统计量输入模型,以近似未归一化的信息构造非平稳注意力表示。在进行注意力计算时,通过引入统计量尺度变换得到非平稳的注意力表示:【论文阅读】基于深度学习的时序预测——Non-stationary Transformers,时间序列分析与处理,论文阅读,深度学习,人工智能
    【论文阅读】基于深度学习的时序预测——Non-stationary Transformers,时间序列分析与处理,论文阅读,深度学习,人工智能
    【论文阅读】基于深度学习的时序预测——Non-stationary Transformers,时间序列分析与处理,论文阅读,深度学习,人工智能
    这种基于统计量的计算被定义为去平稳化因子;

到了这里,关于【论文阅读】基于深度学习的时序预测——Non-stationary Transformers的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 【论文阅读】基于深度学习的时序异常检测——TransAD

    【论文阅读】基于深度学习的时序异常检测——TransAD

    系列文章链接 数据解读参考:数据基础:多维时序数据集简介 论文一:2022 Anomaly Transformer:异常分数预测 论文二:2022 TransAD:异常分数预测 论文三:2023 TimesNet:基于卷积的多任务模型 论文链接:TransAD.pdf 代码库链接:https://github.com/imperial-qore/TranAD 这篇文章是基于多变量数

    2024年02月14日
    浏览(24)
  • 【论文阅读】基于深度学习的时序异常检测——TimesNet

    【论文阅读】基于深度学习的时序异常检测——TimesNet

    系列文章链接 参考数据集讲解:数据基础:多维时序数据集简介 论文一:2022 Anomaly Transformer:异常分数预测 论文二:2022 TransAD:异常分数预测 论文三:2023 TimesNet:基于卷积的多任务模型 论文链接:TimesNet.pdf 代码库链接:https://github.com/thuml/Time-Series-Library 项目介绍:https

    2024年02月13日
    浏览(16)
  • 【论文阅读】基于深度学习的时序异常检测——Anomaly Transformer

    【论文阅读】基于深度学习的时序异常检测——Anomaly Transformer

    系列文章链接 数据解读参考:数据基础:多维时序数据集简介 论文一:2022 Anomaly Transformer:异常分数预测 论文二:2022 TransAD:异常分数预测 论文三:2023 TimesNet:基于卷积的多任务模型 论文链接:Anomaly Transformer.pdf 代码链接:https://github.com/thuml/Anomaly-Transformer 视频讲解(原

    2024年02月14日
    浏览(17)
  • 论文阅读——基于深度学习智能垃圾分类

    B. Fu, S. Li, J. Wei, Q. Li, Q. Wang and J. Tu, “A Novel Intelligent Garbage Classification System Based on Deep Learning and an Embedded Linux System,” in IEEE Access, vol. 9, pp. 131134-131146, 2021, doi: 10.1109/ACCESS.2021.3114496. 垃圾数量的急剧增加和垃圾中物质的复杂多样性带来了严重的环境污染和资源浪费问题。回收

    2024年02月11日
    浏览(12)
  • 论文阅读-基于深度学习的多模态情感分析研究综述

    论文阅读-基于深度学习的多模态情感分析研究综述

    非核心 原文链接:基于深度学习的多模态情感分析研究综述 - 中国知网 (cnki.net) 深度学习完成多模态情感分析综述。主要介绍 多模态情感分析 的概念、背景、意义。总结了 多模态融合技术和交互技术 ,讨论多模态情感分析 未来发展 。 目前经典的多模态情感分析研究已经

    2024年02月04日
    浏览(19)
  • 论文阅读:基于深度学习的大尺度遥感图像建筑物分割研究

    论文阅读:基于深度学习的大尺度遥感图像建筑物分割研究

    一、该网络中采用了上下文信息捕获模块。通过扩大感受野,在保留细节信息的同时,在中心部分进行多尺度特征的融合,缓解了传统算法中细节信息丢失的问题;通过自适应地融合局部语义特征,该网络在空间特征和通道特征之间建立长距离的依赖关系; 二、分割网络:边

    2024年02月15日
    浏览(14)
  • 论文阅读-2:基于深度学习的大尺度遥感图像建筑物分割研究

    论文阅读-2:基于深度学习的大尺度遥感图像建筑物分割研究

    一、该网络中采用了上下文信息捕获模块。通过扩大感受野,在保留细节信息的同时,在中心部分进行多尺度特征的融合,缓解了传统算法中细节信息丢失的问题;通过自适应地融合局部语义特征,该网络在空间特征和通道特征之间建立长距离的依赖关系; 二、分割网络:边

    2024年02月16日
    浏览(12)
  • 【论文阅读】一种基于图深度学习的互联网通信故障检测与定位方法

    【论文阅读】一种基于图深度学习的互联网通信故障检测与定位方法

    论文原文:A Graph Deep Learning-Based Fault Detection and Positioning Method for Internet Communication Networks 一种基于图深度学习的 互联网通信故障检测与定位方法         新一代互联网在现代社会中,互联网接入的规模正在逐渐扩大。根据深度学习IC发布的最新报告,近一半已经成为网民

    2024年04月08日
    浏览(13)
  • 【论文阅读】xNIDS:可解释的基于深度学习的网络入侵检测系统的主动入侵响应(USENIX-2023)

    【论文阅读】xNIDS:可解释的基于深度学习的网络入侵检测系统的主动入侵响应(USENIX-2023)

      基于深度学习的网络入侵检测系统(DL-NIDS)得到了显著的探索,并显示出卓越的性能,但存在两个问题: 检测结果和可操作的解释之间存在语义差距,不足以对检测到的入侵作出积极的回应 高错误成本使网络运营商不愿意仅仅根据检测结果做出反应(即高误报带来的警

    2024年02月05日
    浏览(25)
  • [论文阅读]CWD——基于稠密预测的通道式知识蒸馏

    [论文阅读]CWD——基于稠密预测的通道式知识蒸馏

    基于稠密预测的通道式知识蒸馏 论文网址:CWD 这篇论文「Channel-wise Knowledge Distillation for Dense Prediction」提出了一种针对密集预测任务的基于通道的知识蒸馏方法。下面我详细讲解该方法的主要内容: 问题背景 在计算机视觉任务中,图像分类只需要预测整张图像的类别,而密集预

    2024年01月16日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包