机器学习中的数学——常用概率分布(二):范畴分布(Multinoulli分布)

这篇具有很好参考价值的文章主要介绍了机器学习中的数学——常用概率分布(二):范畴分布(Multinoulli分布)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

分类目录:《机器学习中的数学》总目录
相关文章:
· 常用概率分布(一):伯努利分布(Bernoulli分布)
· 常用概率分布(二):范畴分布(Multinoulli分布)
· 常用概率分布(三):二项分布(Binomial分布)
· 常用概率分布(四):均匀分布(Uniform分布)
· 常用概率分布(五):高斯分布(Gaussian分布)/正态分布(Normal分布)
· 常用概率分布(六):指数分布(Exponential分布)
· 常用概率分布(七): 拉普拉斯分布(Laplace分布)
· 常用概率分布(八):狄拉克分布(Dirac分布)
· 常用概率分布(九):经验分布(Empirical分布)
· 常用概率分布(十):贝塔分布(Beta分布)
· 常用概率分布(十一):狄利克雷分布(Dirichlet分布)
· 常用概率分布(十二):逻辑斯谛分布(Logistic 分布)


范畴分布(Multinoulli分布)是指在具有 k k k个不同状态的单个离散型随机变量上的分布,其中 k k k是个有限值。Multinoulli分布由向量 p ∈ [ 0 , 1 ] k − 1 p\in[0, 1]^{k-1} p[0,1]k1参数化,其中每一个分量 p p p表示第 i i i个状态的概率。最后的第 k k k个状态的概率可以通过 1 − ∑ k − 1 p i 1-\sum_{k-1}p_i 1k1pi给出。注意我们必须限制 ∑ k − 1 p i ≤ 1 \sum_{k-1}p_i\leq 1 k1pi1

Multinoulli分布经常用来表示对象分类的分布,所以我们很少假设状态1具有数值1之类的。因此,我们通常不需要去计算Multinoulli分布的随机变量的期望和方差。

Bernoulli分布和Multinoulli分布足够用来描述在它们领域内的任意分布。它们能够描述这些分布,不是因为它们特别强大,而是因为它们的领域很简单;它们可以对那些,能够将所有的状态进行枚举的离散型随机变量进行建模。当处理的是连续型随机变量时,会有不可数无限多的状态,所以任何通过少量参数描述的概率分布都必须在分布上加以严格的限制。文章来源地址https://www.toymoban.com/news/detail-645973.html

到了这里,关于机器学习中的数学——常用概率分布(二):范畴分布(Multinoulli分布)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 【概率论】连续型随机变量的分布函数及数学期望(一)

    已知F₁(x)和F₂(x)是分布函数,若 aF₁(x)-bF₂(x)也是分布函数,则下列关于常数a,b的选项中正确的是()。 A.a= 3 5 frac{3}{5}

    2024年02月12日
    浏览(14)
  • 机器学习中的数学原理——分类的正则化

    机器学习中的数学原理——分类的正则化

    通过这篇博客,你将清晰的明白什么是 分类的正则化 。这个专栏名为白话机器学习中数学学习笔记,主要是用来分享一下我在 机器学习中的学习笔记及一些感悟,也希望对你的学习有帮助哦!感兴趣的小伙伴欢迎私信或者评论区留言!这一篇就更新一下 《 白话机器学习中

    2024年01月23日
    浏览(8)
  • 【应用统计学】随机变量的概率分布,数学期望和方差及协方差

    【应用统计学】随机变量的概率分布,数学期望和方差及协方差

     【例4-5】某厂对一批产品进行抽检,该批产品含有10件正品及3件次品。设每次抽取时,各件产品被抽到的可能性相等。一件一件抽取产品进行检验,每次抽取的产品都不放回该批产品中,求直到抽得正品为止所需次数X的分布律。 解: 由于每次抽取的产品不再放回,因此离散型

    2024年02月05日
    浏览(16)
  • 机器学习中的数学原理——对数似然函数

    机器学习中的数学原理——对数似然函数

    这个专栏主要是用来分享一下我在 机器学习中的 学习笔记及一些感悟,也希望对你的学习有帮助哦!感兴趣的小伙伴欢迎 私信或者评论区留言!这一篇就更新一下《 白话机器学习中的数学——对数似然函数》! 目录 一、什么是对数似然函数 二、算法分析 三、总结  对

    2024年04月10日
    浏览(9)
  • 机器学习中的数学原理——模型评估与交叉验证

    机器学习中的数学原理——模型评估与交叉验证

    惭愧惭愧!机器学习中的数学原理这个专栏已经很久没有更新了!前段时间一直在学习深度学习,paddlepaddle,刷题专栏跟新了,这个专栏就被打入冷宫了。这个专栏名为 白话机器学习中数学学习笔记 ,主要是用来分享一下我在 机器学习中的学习笔记及一些感悟,也希望对你

    2024年01月15日
    浏览(13)
  • 【考研数学】概率论与数理统计 —— 第三章 | 二维随机变量及其分布(3,二维随机变量函数的分布)

    【考研数学】概率论与数理统计 —— 第三章 | 二维随机变量及其分布(3,二维随机变量函数的分布)

    设 ( X , Y ) (X,Y) ( X , Y ) 为二维随机变量,以 X , Y X,Y X , Y 为变量所构成的二元函数 Z = φ ( X , Y ) Z=varphi(X,Y) Z = φ ( X , Y ) ,称为随机变量 ( X , Y ) (X,Y) ( X , Y ) 的函数,其分布一般有如下几种情形: ( X , Y ) (X,Y) ( X , Y ) 为二维离散型随机变量 设 ( X , Y ) (X,Y) ( X , Y ) 联合分布律为

    2024年02月07日
    浏览(15)
  • 机器学习中的数学原理——精确率与召回率

    机器学习中的数学原理——精确率与召回率

    在Yolov5训练完之后会有很多图片,它们的具体含义是什么呢? 通过这篇博客,你将清晰的明白什么是 精确率、召回率 。这个专栏名为白话机器学习中数学学习笔记,主要是用来分享一下我在 机器学习中的学习笔记及一些感悟,也希望对你的学习有帮助哦!感兴趣的小伙伴欢

    2023年04月09日
    浏览(9)
  • 机器学习中的数学——学习曲线如何区别欠拟合与过拟合

    机器学习中的数学——学习曲线如何区别欠拟合与过拟合

    通过这篇博客,你将清晰的明白什么是 如何区别欠拟合与过拟合 。这个专栏名为白话机器学习中数学学习笔记,主要是用来分享一下我在 机器学习中的学习笔记及一些感悟,也希望对你的学习有帮助哦!感兴趣的小伙伴欢迎私信或者评论区留言!这一篇就更新一下 《 白话

    2023年04月19日
    浏览(12)
  • 概率论与数理统计中常见的随机变量分布律、数学期望、方差及其介绍

    概率论与数理统计中常见的随机变量分布律、数学期望、方差及其介绍

    设随机变量X的所有可能取值为0与1两个值,其分布律为 若分布律如上所示,则称X服从以P为参数的(0-1)分布或两点分布。记作X~ B(1,p) 0-1分布的分布律利用表格法表示为: X 0 1 P 1-P P 0-1分布的数学期望 E(X) = 0 * (1 - p) + 1 * p = p 二项分布的分布律如下所示: 其中P是事件在一次试验

    2024年02月05日
    浏览(28)
  • 人工智能数学基础--概率与统计13:连续随机变量的标准正态分布

    人工智能数学基础--概率与统计13:连续随机变量的标准正态分布

    一、引言 在《人工智能数学基础–概率与统计12:连续随机变量的概率密度函数以及正态分布》介绍了连续随机变量概率分布及概率密度函数的概念,并介绍了连续随机变量一个重要的概率密度函数:正态分布的概率密度函数的定义以及推导、使用场景,本文将介绍连续随机

    2023年04月25日
    浏览(14)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包