ASR(自动语音识别)任务中的LLM(大语言模型)

这篇具有很好参考价值的文章主要介绍了ASR(自动语音识别)任务中的LLM(大语言模型)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、LLM大语言模型的特点

ASR(自动语音识别)任务中的LLM(大语言模型),ASR,语音识别,语言模型,LLM,大语言模型

 二、大语言模型在ASR任务中的应用

浅度融合

浅层融合指的是LLM本身并没有和音频信息进行直接计算。其仅对ASR模型输出的文本结果进行重打分或者质量评估

深度融合

LLMASR模型进行深度结合,统一语音和文本的编码空间或者直接利用ASR编码器的隐状态参与计算,利用大语言模型的能力得到更好的解码结果。

三、浅度融合

1、Large-scale Language Model Rescoring on Long-Form Data

利用能力更加强大的LLM为ASR模型的推理结果进行质量评分

ASR(自动语音识别)任务中的LLM(大语言模型),ASR,语音识别,语言模型,LLM,大语言模型

2、Prompting Large Language Models For Zero-Shot Domain Adaptation in Speech Recognition

利用能力更加强大的LLM为语言模型的输出进行重打分

ASR(自动语音识别)任务中的LLM(大语言模型),ASR,语音识别,语言模型,LLM,大语言模型

 四、深度融合

1、Prompting Large Language Models For Zero-Shot Domain Adaptation in Speech Recognition

使用语音编码器编码提示文本的信息输入到大语言模型中预测下一个token

ASR(自动语音识别)任务中的LLM(大语言模型),ASR,语音识别,语言模型,LLM,大语言模型

编码器:使用HuBERT处理语音序列,并使用卷积网络对其进行下采样;

解码器:使用LLaMA作为解码器并融入Gated-XATT-FFN

Cross-attention:使用编码器的输出作为keyvalue,解码器的domain prompt和历史输出作为query计算注意力,注意力使用Gated cross attention

在训练时,保持LLaMA的参数固定,其他模块参数更新。

2、Adapting LLM with Speech for Full Formatted End-to-End Speech Recognition

使用语音编码器编码的信息输入到大语言模型中预测下一个token

ASR(自动语音识别)任务中的LLM(大语言模型),ASR,语音识别,语言模型,LLM,大语言模型

Text Encoder:用于在训练阶段提供更多的文本数据使解码器可以更好地被训练,在推理阶段不再被使用;

Speech Encoder:用于编码语音并使用CTC进行解码获得对应的token

Text Decoder:在训练时对Text Encoder计算MLM损失,对Speech Encoder计算CE损失,用来预测下一个token。在推理时对Speech Encoder的输出进行修正。

ASR(自动语音识别)任务中的LLM(大语言模型),ASR,语音识别,语言模型,LLM,大语言模型

Speech Encoder:用于编码语音信息;

LM:对Speech Encoder下采样之后的输出进行下一个token预测。

 3、Prompting Large Language Models with Speech Recognition Abilities

使用语音编码器编码的信息输入到大语言模型中预测下一个token

ASR(自动语音识别)任务中的LLM(大语言模型),ASR,语音识别,语言模型,LLM,大语言模型

Encoder:基于Conformer的声学编码器,最后使用n个帧进行堆叠投影,得到和LLaMA相同的维度;

Decoder:基于LLaMA 7B的解码器结构;

在训练时,LLaMA使用了基于LoRA的微调方法。

4、On Decoder-Only Architecture For Speech-to-Text and Large Language Model Integration

使用语音编码器编码提示文本的信息输入到大语言模型中预测下一个token

ASR(自动语音识别)任务中的LLM(大语言模型),ASR,语音识别,语言模型,LLM,大语言模型

LLMLLaMA 7B

CTC Compressor:通过过滤语音空白匹配标签序列文本的长度;

Audio Encoder:对CTC过滤后的语音信号进行编码;

Text Prompt:手工设计的提示词,为了达到instruct tuning的效果,本文在训练时设计了多种提示词;

为了稳定训练,在训练时第一阶段训练CTC Compressor,对LLM进行冻结;第二阶段使用LoRALLM进行微调。

5、Speech-to-Text Adapter and Speech-to-Entity Retriever Augmented LLMs for Speech Understanding

ASR(自动语音识别)任务中的LLM(大语言模型),ASR,语音识别,语言模型,LLM,大语言模型

Speech2Text adapter:由一些自注意力子层组成,主要作用是将CTC过滤后的张量转换为可由LLM模型处理的张量。在训练期间,其他部分保持不动,仅训练此部分从而得到一个speech2text性能较好的适配器。

Speech2Entity retriever:根据过滤后的语音表征从数据库中查找与该段语音相关的topk个实体。

T5 Encoder输入:由三部分组成,分别是提示文本表征,输入语音表征以及检索到的topk实体文本表征。Topk实体会被添加到到提示文本输入前,从而提高T5模型语音识别实体的准确率。

 五、深度学习方法对比

ASR(自动语音识别)任务中的LLM(大语言模型),ASR,语音识别,语言模型,LLM,大语言模型

 文章来源地址https://www.toymoban.com/news/detail-656824.html

 

到了这里,关于ASR(自动语音识别)任务中的LLM(大语言模型)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • ASR 语音识别接口封装和分析

    ASR 语音识别接口封装和分析

    这个文档主要是介绍一下我自己封装了 6 家厂商的 短语音识别 和 实时流语音识别 接口的一个包,以及对这些接口的一个对比。分别是,阿里,快商通,百度,腾讯,科大,字节。 zxmfke/asrfactory (github.com) 之前刚好在测试各家的语音识别相关功能,但是每家的返回值都不同,

    2024年02月13日
    浏览(13)
  • 开源(离线)中文语音识别ASR(语音转文本)工具整理

    开源(离线)中文语音识别ASR(语音转文本)工具整理 Open AI在2022年9月21日开源了号称其英文语音辨识能力已达到人类水准的Whisper神经网络,且它亦支持其它98种语言的自动语音辨识。 Whisper系统所提供的自动语音辨识(Automatic Speech Recognition,ASR)模型是被训练来运行语音辨识与翻

    2024年02月13日
    浏览(50)
  • Python使用PaddleSpeech实现语音识别(ASR)、语音合成(TTS)

    Python使用PaddleSpeech实现语音识别(ASR)、语音合成(TTS)

    目录 安装 语音识别 补全标点 语音合成 参考 PaddleSpeech是百度飞桨开发的语音工具 注意,PaddleSpeech不支持过高版本的Python,因为在高版本的Python中,飞桨不再提供paddle.fluid API。这里面我用的是Python3.7 需要通过3个pip命令安装PaddleSpeech: 在使用的时候,urllib3库可能会报错,因

    2024年04月25日
    浏览(17)
  • 使用 Transformers 为多语种语音识别任务微调 Whisper 模型

    使用 Transformers 为多语种语音识别任务微调 Whisper 模型

    本文提供了一个使用 Hugging Face 🤗 Transformers 在任意多语种语音识别 (ASR) 数据集上微调 Whisper 的分步指南。同时,我们还深入解释了 Whisper 模型、Common Voice 数据集以及微调等理论知识,并提供了数据准备和微调的相关代码。如果你想要一个全部是代码,仅有少量解释的 Note

    2024年02月06日
    浏览(10)
  • 使用  Transformers 为多语种语音识别任务微调 Whisper 模型

    使用 Transformers 为多语种语音识别任务微调 Whisper 模型

    本文提供了一个使用 Hugging Face 🤗 Transformers 在任意多语种语音识别 (ASR) 数据集上微调 Whisper 的分步指南。同时,我们还深入解释了 Whisper 模型、Common Voice 数据集以及微调等理论知识,并提供了数据准备和微调的相关代码。如果你想要一个全部是代码,仅有少量解释的 Note

    2024年02月11日
    浏览(11)
  • 利用Adam优化算法进行语音识别任务:提升模型准确率

    作者:禅与计算机程序设计艺术 语音识别是人工智能领域中的一个重要应用,近年来随着深度学习算法的快速发展,语音识别技术也取得了长足的进步。在语音识别任务中,训练模型需要大量的数据和计算资源,而且模型的准确性也是至关重要的。因此,如何提高模型的准确

    2024年02月09日
    浏览(45)
  • Python使用whisper实现语音识别(ASR)

    目录 Whisper的安装 Whisper的基本使用 识别结果转简体中文 断句 Whisper是OpenAI的一个强大的语音识别库,支持离线的语音识别。在使用之前,需要先安装它的库: 使用whisper,还需安装setuptools-rust: 但是,whisper安装时,自带的pytorch可能有些bug,因此需要卸载重装: 卸载: 重装

    2024年03月20日
    浏览(46)
  • Unity 工具 之 Azure 微软连续语音识别ASR的简单整理

    Unity 工具 之 Azure 微软连续语音识别ASR的简单整理

    目录 Unity 工具 之 Azure 微软连续语音识别ASR的简单整理 一、简单介绍 二、实现原理 三、注意实现 四、实现步骤  五、关键脚本 Unity 工具类,自己整理的一些游戏开发可能用到的模块,单独独立使用,方便游戏开发。 本节介绍,这里在使用微软的Azure 进行语音合成的两个方

    2024年02月01日
    浏览(49)
  • AI科普文章 | 语音识别准不准?—— ASR 效果评测原理与实践

    AI科普文章 | 语音识别准不准?—— ASR 效果评测原理与实践

    在日常工作、生活中,语音识别技术作为基础服务,越来越多的出现在我们周围,比如智能音箱、会议记录、字幕生成等等。 作为一项已经很成熟AI技术,市面上很多厂商都会提供语音识别服务,对外声称的识别准确性也很高。 对于业务侧的我们,其实更关心的是在我们特定

    2024年02月09日
    浏览(14)
  • 顶顶通电话机器人接口对接开源ASR(语音识别)

    目前大部分用户使用的都是在线ASR按照分钟或者按次付费,之前开源ASR效果太差不具备商用的条件,随着 阿里达摩院发布了大量开源数据集或者海量工业数据训练的模型,识别效果已经和商用ASR差距非常小,完全具备了很多场景代替商用ASR的能力。 顶顶通也全系列产品进行

    2024年02月08日
    浏览(13)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包