零阶矩、一阶矩、二阶矩、…

这篇具有很好参考价值的文章主要介绍了零阶矩、一阶矩、二阶矩、…。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

数学中矩的概念来自物理学。在物理学中,矩是表示距离和物理量乘积的物理量,表征物体的空间分布。矩在统计学和图像中都有很重要作用,我们常用的Adam优化器其全称为自适应矩估计优化器。本文将介绍各阶矩的理解和不同场景的应用。

Key Words:矩的意义、统计矩、图像矩

1、矩的物理意义

在物理学中,矩是表示距离和物理量乘积的物理量,表征物体的空间分布。矩通常需要一个参考点(基点或参考系)来定义距离。如力和参考点距离乘积得到的力矩(或扭矩),原则上任何物理量和距离相乘都会产生矩,如:质量,电荷分布等。

如果点表示质量:

  • 零阶矩:表示总质量。
  • 一阶原点矩:表示质心。
  • 二阶原点矩:表示转动惯量。

如果点表示高度:

  • 零阶矩:表示所有点高度之和。
  • 一阶原点矩:表示点的位置和对应高度乘积之和,表示所有高度的中心。
  • 二阶中心矩:表示所有点的高度波动范围。

2、矩的数学意义

数学上,是一组点组成的模型的特定的数量测度。

定义:设 X X X Y Y Y 是离散随机变量, c c c 为场数, k k k 为正整数,

如果 E ( ∣ X − c ∣ k ) E(|X-c|^{k}) E(Xck) 存在,则称 E ( ∣ X − c ∣ k ) E(|X-c|^{k}) E(Xck) X X X 关于点 c c c k k k 阶矩。

  • c = 0 c=0 c=0 时,称为 k k k 阶原点矩;
  • c = E ( X ) c=E(X) c=E(X) 时,称为 k k k 阶中心距。

如果 E ( ∣ X − c 1 ∣ p ⋅ ∣ Y − c 2 ∣ q ) E(|X-c_{1}|^{p} \cdot |Y-c_{2}|^{q}) E(Xc1pYc2q) 存在,则称其为 X , Y X,Y X,Y 关于 c c c 点的 p + q p+q p+q 阶矩。

  • c 1 = c 2 = 0 c_{1} = c_{2} = 0 c1=c2=0 时,称为 p + q p+q p+q 阶混合原点矩;
  • c 1 = E ( X ) , c 2 = E ( Y ) c_{1}=E(X),c_{2}=E(Y) c1=E(X),c2=E(Y) 时,称为 p + q p+q p+q 阶混合中心矩。

如果 X , Y X,Y X,Y 是连续型变量,则 ∫ k ( X − c ) k d x \int_{k}(X-c)^{k}dx k(Xc)kdx 称为 X X X 关于点 c c c k k k 阶原点矩, ∫ ∫ p + q ( X − x 0 ) p ⋅ ( Y − y 0 ) q d x d y \int\int_{p+q}(X-x_{0})^{p} \cdot (Y-y_{0})^{q}dxdy p+q(Xx0)p(Yy0)qdxdy 称为 X , Y X, Y X,Y 关于点 c c c p + q p+q p+q 阶混合中心距。

2.1、期望

随机变量的期望定义为其一阶原点矩
E ( x ) = ∫ − ∞ + ∞ x f ( x ) d x E(x) = \int_{-\infty}^{+\infty}xf(x)dx E(x)=+xf(x)dx
在方差等概念定义中,期望也被称为随机变量的中心。显然,任何随机变量的一阶中心矩为 0 0 0,一阶中心矩的计算公式如下:
∫ − ∞ + ∞ ( x − c ) f ( x ) d x \int_{-\infty}^{+\infty}(x-c)f(x)dx +(xc)f(x)dx
对于二阶及更高阶的矩,通常使用中心矩(围绕平均值 c c c 的矩,均值是一阶矩),而不是原点矩。因为中心矩更能体现分布形状的信息。

2.2、方差

随机变量的方差定义为其二阶中心矩
V a r ( x ) = ∫ − ∞ + ∞ ( x − c ) 2 f ( x ) d x Var(x) = \int_{-\infty}^{+\infty}(x-c)^{2}f(x)dx Var(x)=+(xc)2f(x)dx

2.3、归一化矩

归一化 n n n 阶中心矩或者说标准矩,是 n n n 阶中心矩除以标准差 δ n \delta^{n} δn,归一化 n n n 阶中心矩为:
x = E [ ( x − μ ) n ] δ n x = \frac{E[(x- \mu)^{n}]}{\delta^{n}} x=δnE[(xμ)n]
这些归一化矩是无量纲值,表示独立于任何尺度的线性变化的分布。

2.4、偏态

随机变量的偏态(衡量分布不对称性)定义为其三阶中心矩
S ( x ) = ∫ − ∞ + ∞ [ x − E ( x ) ] 3 f ( x ) d x S(x) = \int_{-\infty}^{+\infty}[x - E(x)]^{3}f(x)dx S(x)=+[xE(x)]3f(x)dx
需要注意的是,任何对称分布的偏态为 0 0 0,归一化三阶矩被称为偏斜度

  • 向左偏斜,分布尾部在左侧较长,具有负偏度,失效率数据常向左偏斜,如极少量的灯泡会立即烧坏。
  • 向右偏斜,分布尾部在右侧较长,具有正偏度,工资数据往往以这种方式偏斜,大多数人所得工资较少。
2.5、峰度

一般随机变量的峰度定义为其四阶中心矩与方差平方的比值再减 3 ,减 3 3 3 是为了让正态分布峰度为 0 0 0,这也被称为超值峰度
K ( x ) = ∫ − ∞ + ∞ [ x − E ( x ) ] 4 f ( x ) d x δ 2 − 3 K(x) = \frac{\int_{-\infty}^{+\infty}[x - E(x)]^{4}f(x)dx}{\delta^{2}}-3 K(x)=δ2+[xE(x)]4f(x)dx3
峰度表示分布的波峰和尾部与正态分布的区别,峰度有助于初步了解数据分布的一版特征。

完全符合正态分布的数据峰度值为 0 0 0,且正态分布曲线被称为基线。如果样本峰度显著偏离 0 0 0,就可判断此数据不是正态分布。

零阶矩、一阶矩、二阶矩、…,概率论,算法,矩阵

3、矩的应用

如今矩技术已广泛应用于图像检索和识别 、图像匹配 、图像重建 、数字压缩 、数字水印及运动图像序列分析等领域。常见的矩描述子可以分为以下几种:

  • 几何矩
  • 正交矩
  • 复数矩
  • 旋转矩。
3.1、图像矩

在图像处理,计算机视觉和相关领域中,一个图像矩是图像像素强度的某个特定加权平均(矩),或者是这样的矩的函数,通常选择具有一些有吸引力的特性或解释。图像矩对于分割之后对象的描述是有用的。通过图像矩得到的图像的简单属性包括面积(或总强度),其质心和关于其方向的信息。

对于图像来说,零阶矩表示一团像素的像素值之和,公式如下:
M 00 = ∑ I ∑ J V ( i , j ) M_{00} = \sum_{I}\sum_{J}V(i,j) M00=IJV(i,j)
一阶矩表示横坐标和对应像素值的乘积和纵坐标和对应像素值的乘积,公式如下:
M 10 = ∑ I ∑ J i ⋅ V ( i , j ) M_{10} = \sum_{I}\sum_{J}i \cdot V(i,j) M10=IJiV(i,j)

M 01 = ∑ I ∑ J j ⋅ V ( i , j ) M_{01} = \sum_{I} \sum_{J} j \cdot V(i,j) M01=IJjV(i,j)

3.2、图像的面积和质心:

对于求解图像的面积和质心,我们的应用场景通常是对各个contours进行求解,所以如果前景像素为 1 1 1,背景像素为 0 0 0 的情况, M 00 M_{00} M00 就是所求的contour的面积,质心的公式如下:
x c = M 10 M 00 ,    y c = M 01 M 00 x_{c} = \frac{M_{10}}{M_{00}}, ~~ y_{c} = \frac{M_{01}}{M_{00}} xc=M00M10,  yc=M00M01文章来源地址https://www.toymoban.com/news/detail-665986.html

到了这里,关于零阶矩、一阶矩、二阶矩、…的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 算法、数据结构、计算机系统、数据库MYSQL、概率论、数学实验MATLAB、数学建模、马原、英语、杂项、QT项目

    算法、数据结构、计算机系统、数据库MYSQL、概率论、数学实验MATLAB、数学建模、马原、英语、杂项、QT项目

    可以三个条件 以此类推 (condition1)?x:(condition2)?y:z string变成int int 变成string 可以用循环 模运算展开式推导 我们要证明等式: (a * b) mod m = ((a mod m) * (b mod m)) mod m 假设 a = q1 * m + r1 ,其中 q1 是 a 除以 m 的商, r1 是 a 除以 m 的余数。类似地,假设 b = q2 * m + r2 ,其中

    2024年02月08日
    浏览(17)
  • 概率论与数理统计 第一章 概率论的基本概念

    概率论与数理统计 第一章 概率论的基本概念

    1.1.1 前言 1.研究对象: 确定性现象:必然发生或不发生 随机现象:个别试验结果呈现不确定性,大量试验结果呈现统计规律性 2.概率论与数理统计: ​ 该学科是研究和揭示随机现象统计规律性的学科。 1.1.2 随机试验 1.定义: 可以在相同条件下重复进行; 每次试验的结果可

    2024年03月20日
    浏览(36)
  • 【概率论】几何概率、条件概率及全概率公式作业

    有两箱零件,第一箱装50件,其中20件是一等品;第二箱装30件,其中18件是一等品,现从两箱中随意挑出一箱,然后从该箱中先后任取两个零件,试求第一次取出的零件是一等品的概率_____(结果小数点后保留1位) 【正确答案:0.5 或1/2】 解析: 设A₁,A₂分别表示“挑出第一箱

    2024年02月11日
    浏览(13)
  • 【概率论】条件概率与独立性题目

    已知随机事件A与B满足条件:0P(A)1,0P(B)1。则事件A,B相互独立的充要条件是( C )。 A. P ( B ∣ A ) + P ( B ∣ A ˉ ) = 1 P(B|A)+P(B|bar{A})=1 P ( B ∣ A ) + P ( B ∣ A ˉ ) = 1 B. P ( B ∣ A ) + P ( B ˉ ∣ A ) = 1 P(B|A)+P(bar{B}|A)=1 P ( B ∣ A ) + P ( B ˉ ∣ A ) = 1 C. P ( B ∣ A ) + P ( A ˉ ∣ B ˉ ) = 1 P(B|A)

    2024年02月11日
    浏览(14)
  • 概率论:样本与总体分布,Z分数与概率

    概率论:样本与总体分布,Z分数与概率

    参考书目:《行为科学统计精要》(第八版)——弗雷德里克·J·格雷维特 描述一组数据分布   描述一组样本数据的分布 描述样本数据的均值和整体数据一样,但是样本标准差的公式除以了n-1,这里引入自由度的概念 自由度:如果均值确定,那么n个数据组成的样本中,只有

    2024年02月07日
    浏览(15)
  • 概率论--随机事件与概率--贝叶斯公式--随机变量

    概率论--随机事件与概率--贝叶斯公式--随机变量

    目录 随机事件与概率 概念 为什么要学习概率论 随机事件与随机事件概率 随机事件 随机事件概率 贝叶斯公式  概念 条件概率 概率乘法公式 贝叶斯公式  举个栗子 随机变量   随机变量的定义 随机变量的分类 离散型随机变量 连续型随机变量 概念 随机事件是指在一次试验

    2024年02月11日
    浏览(14)
  • 概率论-1-概率机器人 Probabilistic Robotics

    基本概念 随机变量 静态的 可以做随机试验 随机过程 动态 离散随机变量 概率质量函数 probability mass function 连续随机变量 概率密度函数 probability density function PDF 联合概率 P ( X = x 且 Y = y ) = P ( x , y ) 若 X 和 Y 独立: P ( x , y ) = P ( x ) P ( y ) P(X=x 且 Y=y) = P(x,y)\\\\ 若 X 和 Y 独立:

    2024年03月22日
    浏览(14)
  • 【状态估计】概率论基础

    《机器人学的状态估计》是入行SLAM的经典书籍之一,其中有大量的公式相关的内容,看起来还是比较艰涩的。最近重新读一遍,顺便将其中的一些内容记录下来,方便以后回看。 定义 定义 x x x 为区间 [ a . b ] [a.b] [ a . b ] 上的随机变量,服从某个 概率密度函数 p ( x ) p(x) p

    2024年04月11日
    浏览(14)
  • 概率论基础

    概率论基础

    二维随机变量 二维随机变量是指一个随机实验产生的结果可以用一个有序对来描述的随机变量。它在数学上表示为(X, Y),其中X和Y是两个单独的随机变量。 二维随机变量的取值可以是有限的、可数的或者连续的,取决于具体的情况。对于有限或可数的二维随机变量,可以通过

    2024年02月03日
    浏览(8)
  • 概率论公式

    概率论公式

    方差D(x+y)=D(x)+D(y)+2Cov(x,y)=D(x)+D(y) 协方差Cov(x,y)=E(xy)-E(x)E(y),相互独立的随机变量x,y满足E(xy)=E(x)E(y) 所以随机变量xy相互对立 时,D(x+y)=D(x)+D(y) 转自:多个随机变量运算后的均值与方差计算_爱吃酸菜鱼的汉堡的博客-CSDN博客_多个随机变量的和的方差  

    2024年02月12日
    浏览(11)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包