在 Google Colab 中微调用于命名实体识别的 BERT 模型

这篇具有很好参考价值的文章主要介绍了在 Google Colab 中微调用于命名实体识别的 BERT 模型。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

介绍

命名实体识别是自然语言处理(NLP)领域的一项主要任务。它用于检测文本中的实体,以便在下游任务中进一步使用,因为某些文本/单词对于给定上下文比其他文本/单词更具信息性和重要性。这就是 NER 有时被称为信息检索的原因,即从文本中提取相关关键词并将其分类为所需的类别。

借助命名实体识别,我们可以从医疗记录中提取一般性和特定领域的人员、地点、组织等,例如临床术语、药物、疾病等,以便更好地诊断。文章来源地址https://www.toymoban.com/news/detail-675529.html

先决条件
  • Python 的应用知识以及使用 Pytorch 训练神经网络
  • 有关 Transformer 和 BERT 架构的知识

到了这里,关于在 Google Colab 中微调用于命名实体识别的 BERT 模型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • [oneAPI] 基于BERT预训练模型的命名体识别任务

    [oneAPI] 基于BERT预训练模型的命名体识别任务

    比赛:https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517 Intel® DevCloud for oneAPI:https://devcloud.intel.com/oneapi/get_started/aiAnalyticsToolkitSamples/ 在本次实验中,我们在Intel® DevCloud for oneAPI上搭建实验,借助完全虚拟化的环境,专注于模型开发与优化,无需关心底层配置。使用Intel® Opti

    2024年02月12日
    浏览(10)
  • bert模型训练,加载保存的模型Can‘t load tokenizer for ‘/content/drive/MyDrive/Colab Notebooks/classification_mode

    哈喽! 我用Bert预测评论分数,训练好模型保存到文件夹后,再一次加载它出现了上述错误,不太明白为什么,请教各位! 这是第二次训练这模型,也就是说我训练了一次之后,再把第一次训练的模型用新的数据训练,提高它的精确度,是可以的把,为什么第一次训练没有报

    2024年02月11日
    浏览(14)
  • 猿创征文|信息抽取(2)——pytorch实现Bert-BiLSTM-CRF、Bert-CRF模型进行实体抽取

    猿创征文|信息抽取(2)——pytorch实现Bert-BiLSTM-CRF、Bert-CRF模型进行实体抽取

    论文参考: 1 Neural Architectures for Named Entity Recognition 2 Attention is all you need 3 BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 4 Bidirectional LSTM-CRF Models for Sequence Tagging 使用数据集: https://www.datafountain.cn/competitions/529/ranking Tips:文章可能存在一些漏洞,欢迎留言指出

    2024年02月01日
    浏览(14)
  • GPT-NER:通过大型语言模型的命名实体识别

    讲在前面,chatgpt出来的时候就想过将其利用在信息抽取方面,后续也发现了不少基于这种大语言模型的信息抽取的论文,比如之前收集过的: https://github.com/cocacola-lab/GPT4IE https://github.com/RidongHan/Evaluation-of-ChatGPT-on-Information-Extraction https://github.com/cocacola-lab/ChatIE Unified Text Stru

    2023年04月21日
    浏览(13)
  • 自然语言基础 IMDB下的 MLM (掩码模型) & Bert Fine-tuning (模型微调)

    本文是Hugging Face 上 NLP的一篇代码教程,通过imdb数据集, Fine-tuning微调 Bert预训练模型。 涉及包括: MLM, Bert, Fine-tuning, IMDB, Huggingface Repo 微调的方式是通过调整训练模型的学习率来重新训练模型,这个来自 早期 ACL 2018的一篇paper: 《Universal Language Model Fine-tuning for Text

    2024年02月15日
    浏览(14)
  • 论文浅尝 | 利用对抗攻击策略缓解预训练语言模型中的命名实体情感偏差问题...

    论文浅尝 | 利用对抗攻击策略缓解预训练语言模型中的命名实体情感偏差问题...

    笔记整理:田家琛,天津大学博士,研究方向为文本分类 链接:https://ojs.aaai.org/index.php/AAAI/article/view/26599 动机 近年来,随着预训练语言模型(PLMs)在情感分类领域的广泛应用,PLMs中存在的命名实体情感偏差问题也引起了越来越多的关注。具体而言,当前的PLMs基于神经上下

    2024年02月10日
    浏览(10)
  • 人工智能(pytorch)搭建模型8-利用pytorch搭建一个BiLSTM+CRF模型,实现简单的命名实体识别

    人工智能(pytorch)搭建模型8-利用pytorch搭建一个BiLSTM+CRF模型,实现简单的命名实体识别

    大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型8-利用pytorch搭建一个BiLSTM+CRF模型,实现简单的命名实体识别,BiLSTM+CRF 模型是一种常用的序列标注算法,可用于词性标注、分词、命名实体识别等任务。本文利用pytorch搭建一个BiLSTM+CRF模型,并给出数据样例,

    2024年02月09日
    浏览(51)
  • Gemma谷歌(google)开源大模型微调实战(fintune gemma-2b/7b)

    Gemma谷歌(google)开源大模型微调实战(fintune gemma-2b/7b)

    Gemma-SFT(谷歌, Google), gemma-2b/gemma-7b微调(transformers)/LORA(peft)/推理 v1, 20240222, transformers==4.38.0时候, 微调只跑通了gemma-2b-it(因为只计算了output的loss, 且使用的是fp16), 同时该版本transformers实现有些问题, 比如说1.tokenizer要加bos, 2.RoPE计算精度问题(float32), 3.激活函数gelu_pytorch_tanh; v2,

    2024年04月11日
    浏览(13)
  • DreamBooth 梦幻亭——用于主题驱动的文生图微调扩散模型

    DreamBooth 梦幻亭——用于主题驱动的文生图微调扩散模型

    © 2022 Ruiz, Li, Jampani, Pritch, Rubinstein, Aberman (Google Research) © 2023 Conmajia 本文是 DreamBooth 官网首页的中文翻译。 本文已获得 Nataniel Ruiz 本人授权。 DreamBooth 主要内容基于 CVPR 论文 DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation (2208.12242)。 ‘ ‘ `` ‘ ‘ 这就像

    2024年02月09日
    浏览(8)
  • 微调(Fine-Tune)或不微调:用于 AI 驱动业务转型的大型语言模型

    目录 To Fine-Tune or Not Fine-Tune: Large Language Models for AI-Driven Business Transformation微调或不微调:用于 AI 驱动业务转型的大型语言模型 LLMs - Large Language ModelsLLMs - 大型语言模型 Where do LLMs come from?LLMs 从何而来? How are LLMs trained? LLMs 是如何训练的? 

    2024年02月07日
    浏览(14)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包