2023-05-11:给你一个 m x n 的二进制矩阵 grid, 每个格子要么为 0 (空)要么为 1 (被占据), 给你邮票的尺寸为 stampHeight x stampWidth。 我们想将

这篇具有很好参考价值的文章主要介绍了2023-05-11:给你一个 m x n 的二进制矩阵 grid, 每个格子要么为 0 (空)要么为 1 (被占据), 给你邮票的尺寸为 stampHeight x stampWidth。 我们想将。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

2023-05-11:给你一个 m x n 的二进制矩阵 grid,

每个格子要么为 0 (空)要么为 1 (被占据),

给你邮票的尺寸为 stampHeight x stampWidth。

我们想将邮票贴进二进制矩阵中,且满足以下 限制 和 要求 :

覆盖所有空格子,不覆盖任何被占据的格子,

可以放入任意数目的邮票,邮票可以相互有重叠部分,

邮票不允许旋转,邮票必须完全在矩阵内,

如果在满足上述要求的前提下,可以放入邮票,请返回 true ,否则返回 false。

输入:grid = [[1,0,0,0],[1,0,0,0],[1,0,0,0],[1,0,0,0],[1,0,0,0]], stampHeight = 4, stampWidth = 3。

输出:true。

答案2023-05-11:

大体过程如下:

1.首先对矩阵 grid 进行二维前缀和计算,得到一个新的矩阵 sum。该矩阵中每个位置表示从左上角出发,到该位置形成的子矩阵中所有元素的和。

2.对 grid 中的每个为 0 的位置 (i, j),检查以该位置为左上角的子矩阵是否能够被指定的印章完全覆盖。如果可以,将 diff[i][j] 加 1,diff[i][j+stampWidth] 减 1,diff[i+stampHeight][j] 减 1,diff[i+stampHeight][j+stampWidth] 加 1。这里 diff 矩阵用于记录每个位置的变化量。

3.遍历 grid 中的每一行,使用滚动数组的方式还原 cntpre 数组,并通过它们来计算每列中为 0 的位置的数量。同时,如果某个位置 (i, j) 的值为 0 且它所在列中没有其他的 0,则返回 false;否则返回 true。

时间复杂度为 O(mn),其中 m 和 n 分别表示矩阵 grid 的行数和列数。这是因为函数需要遍历整个矩阵,并对每个位置进行常数次操作。同时,二维前缀和、二维差分和滚动数组优化的时间复杂度也都是 O(mn)。

空间复杂度为 O(mn),因为函数中创建了两个 m+1 行 n+1 列的二维数组 sumdiff,以及一个长度为 n+1 的一维数组 cntpre。这些数组所占用的总空间为 (m+1)(n+1) + 2(n+1) = mn + 3m + 3n + 3,即 O(mn)。

go完整代码如下:

package main

import "fmt"

func main() {
	grid := [][]int{{1, 0, 0, 0}, {1, 0, 0, 0}, {1, 0, 0, 0}, {1, 0, 0, 0}, {1, 0, 0, 0}}
	stampHeight := 4
	stampWidth := 3
	isPossibleToStamp := possibleToStamp(grid, stampHeight, stampWidth)
	fmt.Println(isPossibleToStamp)
}

func possibleToStamp(grid [][]int, stampHeight, stampWidth int) bool {
	m, n := len(grid), len(grid[0])
	sum := make([][]int, m+1)
	sum[0] = make([]int, n+1)
	diff := make([][]int, m+1)
	diff[0] = make([]int, n+1)
	for i, row := range grid {
		sum[i+1] = make([]int, n+1)
		for j, v := range row { // grid 的二维前缀和
			sum[i+1][j+1] = sum[i+1][j] + sum[i][j+1] - sum[i][j] + v
		}
		diff[i+1] = make([]int, n+1)
	}

	for i, row := range grid {
		for j, v := range row {
			if v == 0 {
				x, y := i+stampHeight, j+stampWidth // 注意这是矩形右下角横纵坐标都 +1 后的位置
				if x <= m && y <= n && sum[x][y]-sum[x][j]-sum[i][y]+sum[i][j] == 0 {
					diff[i][j]++
					diff[i][y]--
					diff[x][j]--
					diff[x][y]++ // 更新二维差分
				}
			}
		}
	}

	// 还原二维差分矩阵对应的计数矩阵,这里用滚动数组实现
	cnt := make([]int, n+1)
	pre := make([]int, n+1)
	for i, row := range grid {
		for j, v := range row {
			cnt[j+1] = cnt[j] + pre[j+1] - pre[j] + diff[i][j]
			if cnt[j+1] == 0 && v == 0 {
				return false
			}
		}
		cnt, pre = pre, cnt
	}
	return true
}

2023-05-11:给你一个 m x n 的二进制矩阵 grid, 每个格子要么为 0 (空)要么为 1 (被占据), 给你邮票的尺寸为 stampHeight x stampWidth。 我们想将,福大大架构师每日一题,矩阵,算法,数据结构,rust,go

rust完整代码如下:

fn main() {
    let grid = vec![
        vec![1, 0, 0, 0],
        vec![1, 0, 0, 0],
        vec![1, 0, 0, 0],
        vec![1, 0, 0, 0],
        vec![1, 0, 0, 0],
    ];
    let stamp_height = 4;
    let stamp_width = 3;
    let is_possible_to_stamp = possible_to_stamp(&grid, stamp_height, stamp_width);
    println!("{}", is_possible_to_stamp);
}

fn possible_to_stamp(grid: &[Vec<i32>], stamp_height: usize, stamp_width: usize) -> bool {
    let m = grid.len();
    let n = grid[0].len();
    let mut sum = vec![vec![0; n + 1]; m + 1];
    let mut diff = vec![vec![0; n + 1]; m + 1];

    for i in 0..m {
        for j in 0..n {
            sum[i + 1][j + 1] = sum[i + 1][j] + sum[i][j + 1] - sum[i][j] + grid[i][j];
        }
    }

    for i in 0..m {
        for j in 0..n {
            if grid[i][j] == 0 {
                let x = i + stamp_height;
                let y = j + stamp_width;

                if x <= m && y <= n && sum[x][y] - sum[x][j] - sum[i][y] + sum[i][j] == 0 {
                    diff[i][j] += 1;
                    diff[i][y] -= 1;
                    diff[x][j] -= 1;
                    diff[x][y] += 1;
                }
            }
        }
    }

    let mut cnt = vec![0; n + 1];
    let mut pre = vec![0; n + 1];

    for i in 0..m {
        for j in 0..n {
            cnt[j + 1] = cnt[j] + pre[j + 1] - pre[j] + diff[i][j];

            if cnt[j + 1] == 0 && grid[i][j] == 0 {
                return false;
            }
        }

        std::mem::swap(&mut cnt, &mut pre);
    }

    true
}

2023-05-11:给你一个 m x n 的二进制矩阵 grid, 每个格子要么为 0 (空)要么为 1 (被占据), 给你邮票的尺寸为 stampHeight x stampWidth。 我们想将,福大大架构师每日一题,矩阵,算法,数据结构,rust,go

c语言完整代码如下:

#include <stdio.h>
#include <stdlib.h>

int possibleToStamp(int** grid, int gridSize, int* gridColSize, int stampHeight, int stampWidth) {
    int m = gridSize, n = *gridColSize;
    int** sum = (int**)malloc(sizeof(int*) * (m + 1));
    for (int i = 0; i <= m; i++) {
        sum[i] = (int*)malloc(sizeof(int) * (n + 1));
    }
    int** diff = (int**)malloc(sizeof(int*) * (m + 1));
    for (int i = 0; i <= m; i++) {
        diff[i] = (int*)malloc(sizeof(int) * (n + 1));
    }

    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            sum[i + 1][j + 1] = sum[i + 1][j] + sum[i][j + 1] - sum[i][j] + grid[i][j];
        }
    }

    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            if (grid[i][j] == 0) {
                int x = i + stampHeight, y = j + stampWidth;
                if (x <= m && y <= n && sum[x][y] - sum[x][j] - sum[i][y] + sum[i][j] == 0) {
                    diff[i][j]++;
                    diff[i][y]--;
                    diff[x][j]--;
                    diff[x][y]++;
                }
            }
        }
    }

    int* cnt = (int*)malloc(sizeof(int) * (n + 1));
    int* pre = (int*)malloc(sizeof(int) * (n + 1));
    for (int i = 0; i <= n; i++) {
        cnt[i] = 0;
        pre[i] = 0;
    }
    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            cnt[j + 1] = cnt[j] + pre[j + 1] - pre[j] + diff[i][j];
            if (cnt[j + 1] == 0 && grid[i][j] == 0) {
                free(cnt);
                free(pre);
                for (int k = 0; k <= m; k++) {
                    free(sum[k]);
                }
                free(sum);
                for (int k = 0; k <= m; k++) {
                    free(diff[k]);
                }
                free(diff);
                return 0;
            }
        }
        int* tmp = cnt;
        cnt = pre;
        pre = tmp;
    }

    free(cnt);
    free(pre);
    for (int i = 0; i <= m; i++) {
        free(sum[i]);
    }
    free(sum);
    for (int i = 0; i <= m; i++) {
        free(diff[i]);
    }
    free(diff);
    return 1;
}

int main() {
    int gridSize = 5, gridColSize = 4;
    int** grid = (int**)malloc(sizeof(int*) * gridSize);
    for (int i = 0; i < gridSize; i++) {
        grid[i] = (int*)malloc(sizeof(int) * gridColSize);
    }
    int data[5][4] = { {1, 0, 0, 0}, {1, 0, 0, 0}, {1, 0, 0, 0}, {1, 0, 0, 0}, {1, 0, 0, 0} };
    for (int i = 0; i < gridSize; i++) {
        for (int j = 0; j < gridColSize; j++) {
            grid[i][j] = data[i][j];
        }
    }
    int stampHeight = 4, stampWidth = 3;
    int isPossibleToStamp = possibleToStamp(grid, gridSize, &gridColSize, stampHeight, stampWidth);
    printf("%s\n", isPossibleToStamp ? "true" : "false");
    for (int i = 0; i < gridSize; i++) {
        free(grid[i]);
    }
    free(grid);
    return 0;
}

2023-05-11:给你一个 m x n 的二进制矩阵 grid, 每个格子要么为 0 (空)要么为 1 (被占据), 给你邮票的尺寸为 stampHeight x stampWidth。 我们想将,福大大架构师每日一题,矩阵,算法,数据结构,rust,go

c++完整代码如下:

#include <iostream>
#include <vector>

using namespace std;

bool possibleToStamp(vector<vector<int>>& grid, int stampHeight, int stampWidth) {
    int m = grid.size(), n = grid[0].size();
    vector<vector<int>> sum(m + 1, vector<int>(n + 1)), diff(m + 1, vector<int>(n + 1));

    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            sum[i + 1][j + 1] = sum[i + 1][j] + sum[i][j + 1] - sum[i][j] + grid[i][j];
        }
    }

    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            if (grid[i][j] == 0) {
                int x = i + stampHeight, y = j + stampWidth;
                if (x <= m && y <= n && sum[x][y] - sum[x][j] - sum[i][y] + sum[i][j] == 0) {
                    diff[i][j]++;
                    diff[i][y]--;
                    diff[x][j]--;
                    diff[x][y]++;
                }
            }
        }
    }

    vector<int> cnt(n + 1), pre(n + 1);
    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            cnt[j + 1] = cnt[j] + pre[j + 1] - pre[j] + diff[i][j];
            if (cnt[j + 1] == 0 && grid[i][j] == 0) {
                return false;
            }
        }
        swap(cnt, pre);
    }

    return true;
}

int main() {
    vector<vector<int>> grid{ {1, 0, 0, 0}, {1, 0, 0, 0}, {1, 0, 0, 0}, {1, 0, 0, 0}, {1, 0, 0, 0} };
    int stampHeight = 4, stampWidth = 3;
    bool isPossibleToStamp = possibleToStamp(grid, stampHeight, stampWidth);
    cout << (isPossibleToStamp ? "true" : "false") << endl;
    return 0;
}

2023-05-11:给你一个 m x n 的二进制矩阵 grid, 每个格子要么为 0 (空)要么为 1 (被占据), 给你邮票的尺寸为 stampHeight x stampWidth。 我们想将,福大大架构师每日一题,矩阵,算法,数据结构,rust,go文章来源地址https://www.toymoban.com/news/detail-699554.html

到了这里,关于2023-05-11:给你一个 m x n 的二进制矩阵 grid, 每个格子要么为 0 (空)要么为 1 (被占据), 给你邮票的尺寸为 stampHeight x stampWidth。 我们想将的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • LeetCode 1253. 重构 2 行二进制矩阵

    力扣题目链接:https://leetcode.cn/problems/reconstruct-a-2-row-binary-matrix/ 给你一个  2  行 n 列的二进制数组: 矩阵是一个二进制矩阵,这意味着矩阵中的每个元素不是  0  就是  1 。 第 0 行的元素之和为  upper 。 第 1 行的元素之和为 lower 。 第 i 列(从 0 开始编号)的元素之和为

    2024年02月11日
    浏览(12)
  • 【1091. 二进制矩阵中的最短路径】

    【1091. 二进制矩阵中的最短路径】

    来源:力扣(LeetCode) 描述: 给你一个 n x n 的二进制矩阵 grid 中,返回矩阵中最短 畅通路径 的长度。如果不存在这样的路径,返回 -1 。 二进制矩阵中的 畅通路径 是一条从 左上角 单元格(即, (0, 0) )到 右下角 单元格(即, (n - 1, n - 1) )的路径,该路径同时满足下述要

    2024年02月08日
    浏览(13)
  • 【每日一题】1253. 重构 2 行二进制矩阵

    给你一个 2 行 n 列的二进制数组: 矩阵是一个二进制矩阵,这意味着矩阵中的每个元素不是 0 就是 1。 第 0 行的元素之和为 upper。 第 1 行的元素之和为 lower。 第 i 列(从 0 开始编号)的元素之和为 colsum[i],colsum 是一个长度为 n 的整数数组。 你需要利用 upper,lower 和 colsu

    2024年02月12日
    浏览(45)
  • ​LeetCode解法汇总253. 重构 2 行二进制矩阵

    https://github.com/September26/java-algorithms 给你一个  2  行  n  列的二进制数组: 矩阵是一个二进制矩阵,这意味着矩阵中的每个元素不是  0  就是  1 。 第  0  行的元素之和为  upper 。 第  1  行的元素之和为  lower 。 第  i  列(从  0  开始编号)的元素之和为  colsum[i] ,

    2024年02月11日
    浏览(12)
  • 如何将一个实例的内存二进制内容读出来?

    如何将一个实例的内存二进制内容读出来?

    在《如何计算一个实例占用多少内存?》中我们知道一个值类型或者引用类型的实例在内存中占多少字节。如果我们知道这段连续的字节序列的初始地址,我们就能够将代表该实例的字节内容读取出来。在接下来的内容中,我们将利用一个简单的方法输出指定实例的字节序列

    2024年02月08日
    浏览(11)
  • 二进制部署高可用k8s集群V1.20.11版本

    二进制部署高可用k8s集群V1.20.11版本

    单master架构图 master节点 node1节点 node2节点   Etcd是一个分布式键值存储系统, K8s使用Etcd进行数据存储 ,所以先准备一个Etcd数据库,为解决Etcd单点故障,应采用集群方式进行部署,这里使用3台组件集群,可容忍1台机器故障,当然 也可以使用5台组件集群,可容忍2台机器故

    2024年01月22日
    浏览(19)
  • 【算法】Reconstruct a 2-Row Binary Matrix 重构 2 行二进制矩阵

    给你一个 2 行 n 列的二进制数组: 矩阵是一个二进制矩阵,这意味着矩阵中的每个元素不是 0 就是 1。 第 0 行的元素之和为 upper。 第 1 行的元素之和为 lower。 第 i 列(从 0 开始编号)的元素之和为 colsum[i],colsum 是一个长度为 n 的整数数组。 你需要利用 upper,lower 和 colsu

    2024年02月12日
    浏览(15)
  • 2023-06-14 LeetCode每日一题(二进制字符串前缀一致的次数)

    点击跳转到题目位置 给你一个长度为 n 、下标从 1 开始的二进制字符串,所有位最开始都是 0 。我们会按步翻转该二进制字符串的所有位(即,将 0 变为 1)。 给你一个下标从 1 开始的整数数组 flips ,其中 flips[i] 表示对应下标 i 的位将会在第 i 步翻转。 二进制字符串 前缀

    2024年02月08日
    浏览(50)
  • 【每日一题Day218】LC1091 二进制矩阵中的最短路径 | BFS

    你驾驶出租车行驶在一条有 n 个地点的路上。这 n 个地点从近到远编号为 1 到 n ,你想要从 1 开到 n ,通过接乘客订单盈利。你只能沿着编号递增的方向前进,不能改变方向。 乘客信息用一个下标从 0 开始的二维数组 rides 表示,其中 rides[i] = [starti, endi, tipi] 表示第 i 位乘客

    2024年02月08日
    浏览(45)
  • java数据结构与算法刷题-----LeetCode1091. 二进制矩阵中的最短路径

    java数据结构与算法刷题-----LeetCode1091. 二进制矩阵中的最短路径

    java数据结构与算法刷题目录(剑指Offer、LeetCode、ACM)-----主目录-----持续更新(进不去说明我没写完): https://blog.csdn.net/grd_java/article/details/123063846 双分裂蛇:是求二维表中从起点到终点的经典思路(也是求无权图的最短路径问题的经典解法)。创建两条分裂蛇,分别从起点和

    2024年04月26日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包