【论文笔记】SVDM: Single-View Diffusion Model for Pseudo-Stereo 3D Object Detection

这篇具有很好参考价值的文章主要介绍了【论文笔记】SVDM: Single-View Diffusion Model for Pseudo-Stereo 3D Object Detection。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

原文链接:https://arxiv.org/abs/2307.02270

1. 引言

  目前的从单目相机生成伪传感器表达的方法依赖预训练的深度估计网络。这些方法需要深度标签来训练深度估计网络,且伪立体方法通过图像正向变形合成立体图像,会导致遮挡区域的像素伪影、扭曲、孔洞。此外,特征级别的伪立体图生成很难直接应用,且适应度有限。
  那么如何绕过深度估计,在图像层面设计透视图生成器呢?和GAN相比,扩散模型有更简单的结构、更少的超参数和更简单的训练步骤,但目前没有关于3D目标检测伪视图生成的研究。
  本文设计单一视图扩散模型(SVDM)进行伪视图合成。SVDM假设已知左视图图像,将高斯噪声替换为左图像素,并逐渐扩散右图像素到全图。由于立体图像细微的视差,仅使用很少的步骤就能产生不错的结果。SVDM不使用深度真值,且能端到端训练。

3. 方法

3.1 准备知识

3.1.a 立体3D检测器

  可分为3类:只需要立体图像训练的模型(如Stereo R-CNN)、需要额外深度真值训练的模型(YOLOStereo3D)和基于体积网格的模型(如LIGA-Stereo)。

3.1.b 去噪扩散概率模型(DDPM)

  详见扩散模型(Diffusion Model)简介。DDPM的目标是最优化置信下限(ELBO)。多数条件扩散模型保留了扩散过程,并将条件 y y y插入训练目标中: E t , x 0 , ϵ [ ∥ ϵ − ϵ θ ( x t , y , t ) ∥ 2 2 ] \mathbb{E}_{t,x_0,\epsilon}[\|\epsilon-\epsilon_\theta(x_t,y,t)\|_2^2] Et,x0,ϵ[ϵϵθ(xt,y,t)22]  但由于 p ( x t ∣ y ) p(x_t|y) p(xty)没有显式地出现在训练目标中,要保证扩散模型能学到期望的条件分布是很困难的。

3.2 单一视图扩散模型

  本模型将新视图生成任务视为基于扩散模型的、图像到图像(I2I)的转换任务。本文的方法如下图所示,包含3种扩散模型方法:高斯噪声操作器、视图图像操作器和一步生成。
【论文笔记】SVDM: Single-View Diffusion Model for Pseudo-Stereo 3D Object Detection,扩散模型与目标检测,论文阅读,目标检测,计算机视觉,深度学习,自动驾驶

3.2.a 高斯噪声操作器

  为了学习两个视图域之间的变换,根据BBDM,本文使用布朗桥扩散过程而非DDPM方法。
  布朗桥过程是连续时间随机模型,其中扩散过程中的概率分布是以起始状态和终止状态为条件的。记起始状态为 x 0 ∼ q d a t a ( x 0 ) x_0\sim q_{data}(x_0) x0qdata(x0),终止状态为 x T x_T xT,则布朗桥扩散过程的状态分布为 q B B ( x t ∣ x 0 , y ) = N ( x t ; ( 1 − m t ) x 0 + m t y , δ t I ) q_{BB}(x_t|x_0,y)=\mathcal{N}(x_t;(1-m_t)x_0+m_ty,\delta_tI) qBB(xtx0,y)=N(xt;(1mt)x0+mty,δtI)其中 m t = t / T m_t=t/T mt=t/T δ t \delta_t δt为方差。为避免方差过大导致无法训练,使用下列方差调度: δ t = s [ 1 − ( ( 1 − m t ) 2 + m t 2 ) ] = 2 s ( m t − m t 2 ) \delta_t=s[1-((1-m_t)^2+m_t^2)]=2s(m_t-m_t^2) δt=s[1((1mt)2+mt2)]=2s(mtmt2)其中 s s s控制样本的多样性,默认为1。
  正向过程如下:当 t = 0 t=0 t=0时, m t = 0 m_t=0 mt=0,此时均值为 x 0 x_0 x0,方差为0;当 t = T t=T t=T时, m t = 1 m_t=1 mt=1,此时均值为 y y y,方差为0。中间过程按下式计算: x t = ( 1 − m t ) x 0 + m t y + δ t ϵ x_t=(1-m_t)x_0+m_ty+\sqrt{\delta_t}\epsilon xt=(1mt)x0+mty+δt ϵ其中 ϵ ∼ N ( 0 , I ) \epsilon\sim\mathcal{N}(0,I) ϵN(0,I)。用 t − 1 t-1 t1替换上式中的 t t t,两式相减得到转移概率: q B B ( x t ∣ x t − 1 , y ) = N ( x t ; 1 − m t 1 − m t − 1 x t − 1 + ( m t − 1 − m t 1 − m t − 1 m t − 1 ) y , δ t ∣ t − 1 I ) q_{BB}(x_t|x_{t-1},y)=\mathcal{N}(x_t;\frac{1-m_t}{1-m_{t-1}}x_{t-1}+(m_t-\frac{1-m_t}{1-m_{t-1}}m_{t-1})y,\delta_{t|t-1}I) qBB(xtxt1,y)=N(xt;1mt11mtxt1+(mt1mt11mtmt1)y,δtt1I)其中 δ t ∣ t − 1 = δ t − δ t − 1 ( 1 − m t ) 2 ( 1 − m t − 1 ) 2 \delta_{t|t-1}=\delta_t-\delta_{t-1}\frac{(1-m_t)^2}{(1-m_{t-1})^2} δtt1=δtδt1(1mt1)2(1mt)2  逆过程从已知视图出发,逐步得到目标视图的分布。即基于 x t x_t xt预测 x t − 1 x_{t-1} xt1 p θ ( x t − 1 ∣ x t , y ) = N ( x t − 1 ; μ θ ( x t , t ) , δ ~ t I ) p_\theta(x_{t-1}|x_t,y)=\mathcal{N}(x_{t-1};\mu_\theta(x_t,t),\tilde{\delta}_tI) pθ(xt1xt,y)=N(xt1;μθ(xt,t),δ~tI)其中 μ θ ( x t , t ) \mu_\theta(x_t,t) μθ(xt,t)是预测噪声的均值,由神经网络基于极大似然准则估计。 δ ~ t \tilde{\delta}_t δ~t为每步噪声的方差,解析形式为 δ ~ t = δ t ∣ t − 1 δ t − 1 δ t \tilde{\delta}_t=\frac{\delta_{t|t-1}\delta_{t-1}}{\delta_t} δ~t=δtδtt1δt1
  完整的训练和推断过程如下:

BBDM的训练算法

  1. 采样数据对 x 0 ∼ q ( x 0 ) , y ∼ q ( y ) x_0\sim q(x_0),y\sim q(y) x0q(x0),yq(y)
  2. 均匀采样时间 t ∈ { 1 , 2 , ⋯   , T } t\in\{1,2,\cdots,T\} t{1,2,,T}
  3. 采样高斯噪声 ϵ ∼ N ( 0 , I ) \epsilon\sim\mathcal{N}(0,I) ϵN(0,I)
  4. 正向扩散: x t = ( 1 − m t ) x 0 + m t y + δ t ϵ x_t=(1-m_t)x_0+m_ty+\sqrt{\delta_t}\epsilon xt=(1mt)x0+mty+δt ϵ
  5. 计算 ∥ m t ( y − x 0 ) + δ t ϵ − ϵ θ ( x t , t ) ∥ 2 \|m_t(y-x_0)+\sqrt{\delta_t}\epsilon-\epsilon_\theta(x_t,t)\|^2 mt(yx0)+δt ϵϵθ(xt,t)2的梯度。

BBDM的采样算法:

  1. 采样条件输入 x T = y ∼ q ( y ) x_T=y\sim q(y) xT=yq(y)
  2. t = T t=T t=T开始,进行下面的过程直到 t = 1 t=1 t=1
      采样 z ∼ N ( 0 , I ) z\sim\mathcal{N}(0,I) zN(0,I)
      计算 x t − 1 = c x t x t + c y t y − c ϵ t ϵ θ ( x t , t ) + δ ~ t z x_{t-1}=c_{xt}x_t+c_{yt}y-c_{\epsilon t}\epsilon_\theta(x_t,t)+\sqrt{\tilde{\delta}_t}z xt1=cxtxt+cytycϵtϵθ(xt,t)+δ~t z
  3. t = 1 t=1 t=1时,计算 x 0 = c x 1 x 1 + c y 1 y − c ϵ 1 ϵ θ ( x 1 , 1 ) x_0=c_{x1}x_1+c_{y1}y-c_{\epsilon1}\epsilon_\theta(x_1,1) x0=cx1x1+cy1ycϵ1ϵθ(x1,1)

3.2.b 视图图像操作器

  布朗桥扩散模型引入了额外的超参数。本文提出基于视图图像操作器的方法,将目标图像视为特殊噪声,迭代地将目标图像转换为源图像。给定初始状态 x 0 x_0 x0和目标状态 y y y,中间状态 x t x_t xt可写为: x t = α t x 0 + 1 − α t y x_t=\sqrt{\alpha_t}x_0+\sqrt{1-\alpha_t}y xt=αt x0+1αt y与常规的添加噪声过程不同,此处添加的为逐步增加权重的新视图图像。采样过程如下所示:

  1. 输入源图像 x T x_T xT
  2. t = T t=T t=T开始,进行下面的过程直到 t = 0 t=0 t=0
       x 0 ≤ f ( x t , t ) x_0\leq f(x_t,t) x0f(xt,t)
       x t − 1 = x t − D ( x 0 , t ) + D ( x 0 , t − 1 ) x_{t-1}=x_t-D(x_0,t)+D(x_0,t-1) xt1=xtD(x0,t)+D(x0,t1)

(关于该方法的采样算法,原文中用到的符号应该是有问题且欠缺解释的,这里仅能猜测原文的 s s s以及 i i i实际均应为 t t t)

   α t \alpha_t αt的调度如下: α t = f ( t ) f ( 0 ) , f ( t ) = cos ⁡ ( t / T + s 1 + s ⋅ π 2 ) 2 \alpha_t=\frac{f(t)}{f(0)},f(t)=\cos(\frac{t/T+s}{1+s}\cdot\frac{\pi}{2})^2 αt=f(0)f(t),f(t)=cos(1+st/T+s2π)2与线性调度相比,余弦调度添加目标视图更慢。

3.2.c 加速采样和一步生成

  由于扩散概率模型通常会需要大量步数采样,为加速推断过程,本文提出两种方法:一是添加高阶求解器引导DPM采样,二是引入一步生成方法。
  加速采样:与DDIM的基本思想相似,BBDM也可以在使用非马尔科夫过程的同时,保持和马尔科夫推断过程有相同的边沿分布。
  给定 { 1 , 2 , ⋯   , T } \{1,2,\cdots,T\} {1,2,,T}的长为 S S S的子序列 { T 1 , T 2 , ⋯   , T S } \{T_1,T_2,\cdots,T_S\} {T1,T2,,TS},推断过程可由隐变量的子集 { x T 1 , x T 2 , ⋯   , x T S } \{x_{T_1},x_{T_2},\cdots,x_{T_S}\} {xT1,xT2,,xTS}定义: q B B ( x T s − 1 ∣ x T s , x 0 , y ) = N ( ( 1 − m T s − 1 ) x 0 + m T s − 1 + δ T s − 1 − σ T s 2 δ T s ( x T s − ( 1 − m T s ) x 0 − m T s y ) , σ T s 2 I ) q_{BB}(x_{T_{s-1}}|x_{T_s},x_0,y)=\mathcal{N}((1-m_{T_{s-1}})x_0+m_{T_{s-1}}+\frac{\sqrt{\delta_{T_{s-1}}-\sigma_{T_s}^2}}{\sqrt{\delta_{T_s}}}(x_{T_s}-(1-m_{T_s})x_0-m_{T_s}y),\sigma_{T_s}^2I) qBB(xTs1xTs,x0,y)=N((1mTs1)x0+mTs1+δTs δTs1σTs2 (xTs(1mTs)x0mTsy),σTs2I)
  一步生成:目标是不牺牲迭代细化优势的情况下进行一步生成。这些优势包括能平衡计算和质量,以及零样本数据编辑的能力。该方法建立在连续时间扩散模型概率流常微分方程(ODE)的基础上,其轨迹平滑地从数据分布转变为可处理的噪声分布。使用一个模型学习将任意步骤上的点映射到轨迹的起点,这样模型有自我一致性(即同一条轨迹上的点会被映射到相同的起点)。
  一致性模型能在一次网络评估中将随机噪声向量(ODE轨迹的终点, x T x_T xT)转变为数据样本(ODE轨迹的起点, x 0 x_0 x0)。通过多步连接一致性模型的输出,能用更多的计算提高样本质量并进行零样本数据编辑,从而保持迭代细化的优势。

3.3 网络结构

  根据隐式扩散模型(LDM),SVDM在隐空间而非原始像素空间内进行生成学习以减小计算。
  LDM使用预训练的VAE编码器 E E E将图像 v ∈ R 3 × H × W v\in\mathbb{R}^{3\times H\times W} vR3×H×W编码为隐式嵌入 z = E ( v ) ∈ R c × h × w z=E(v)\in\mathbb{R}^{c\times h\times w} z=E(v)Rc×h×w。其前向过程逐渐向 z z z加入噪声,逆过程去噪以预测 z z z。最后,LDM使用预训练的VAE解码器 D D D解码 z z z,得到高分辨率图像 v = D ( z ) v=D(z) v=D(z)。VAE的编码器和解码器在训练和推断时均保持固定,而由于 h < H , w < W h<H,w<W h<H,w<W,在低分辨率隐空间内扩散比在像素空间扩散更高效。本文的方法类似,给定从域 A A A中采样的图像 I A I_A IA,首先提取隐特征 L A L_A LA,然后进行SVDM过程,将 L A L_A LA映射到相应的、域 B B B内的隐式表达 L A → B L_{A\rightarrow B} LAB。最后使用预训练的VQGAN的解码器生成图像 I A → B I_{A\rightarrow B} IAB
  SVDM模型沿通道维度连接两张图像,并使用标准的U-Net结构和Conv-NeXt残差块进行上下采样,以达到大感受野获取上下文信息。此外,还在不同分辨率下引入注意力块,因为全局交互能大幅提高重建质量。

3.4 损失函数

  损失函数包含3项:RGB L1损失,RGB SSIM损失与感知损失。

3.4.a RGB L1损失与SSIM损失

  L1损失与SSIM损失如下: L L 1 = 1 3 H W ∑ ∣ I ^ t g t − I t g t ∣ L s s i m = 1 − S S I M ( I ^ t g t , I t g t ) \mathcal{L}_{L1}=\frac{1}{3HW}\sum|\hat{I}_{tgt}-I_{tgt}|\\\mathcal{L}_{ssim}=1-SSIM(\hat{I}_{tgt},I_{tgt}) LL1=3HW1I^tgtItgtLssim=1SSIM(I^tgt,Itgt)其中 I ^ t g t \hat{I}_{tgt} I^tgt I t g t I_{tgt} Itgt分别为像素通道的预测值和真实值。

3.4.b 感知损失

  基于过去的工作,感知损失通过强制局部真实性确保重建约束于图像流形,且避免了仅依赖RGB损失引入的模糊。 L l a t e n t = 1 2 ∑ j = 1 J [ ( u j 2 + σ j 2 ) − 1 − log ⁡ σ j 2 ] \mathcal{L}_{latent}=\frac{1}{2}\sum_{j=1}^J[(u_j^2+\sigma_j^2)-1-\log\sigma_j^2] Llatent=21j=1J[(uj2+σj2)1logσj2]

4. 实验

4.4 基于单一图像的视图合成结果

  定量结果:本文的方法在PSNR指标上能超过SotA,但SSIM和LPIPS指标略低于SotA。
  定性结果:可视化表明,本文的方法能生成更真实的图像,有更小的扭曲和伪影。这表明本文的方法有能力建模复杂场景的几何和纹理。

4.5 3D目标检测结果

  定量结果:实验表明,SVDM在使用BBDM的情况下,能超过大多数先进方法。使用视图扩散方法能进一步提升性能,这表明视图结构在3D目标检测上有更好的泛化能力。
  此外,虽然不能完全超过SotA,SVDM在困难物体的检测上有更好的性能。简单物体性能较差的原因可能是有限的约束。背景和障碍物都不可避免地干扰了新视图生成。ConvNeXt-UNet结构能在一定程度上减轻此问题,但并不完美。

4.3 消融研究

  行人和自行车的3D检测结果:由于样本数量少,行人和自行车的检测比汽车的检测更加困难。但本文的方法能在几乎所有难度上超过SotA。

5. 结论和未来展望

  目前,SVDM的一个缺点是不能端到端训练。文章来源地址https://www.toymoban.com/news/detail-715832.html

到了这里,关于【论文笔记】SVDM: Single-View Diffusion Model for Pseudo-Stereo 3D Object Detection的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • Cross-Drone Transformer Network for Robust Single Object Tracking论文阅读笔记

    Cross-Drone Transformer Network for Robust Single Object Tracking论文阅读笔记

    无人机在各种应用中得到了广泛使用,例如航拍和军事安全,这得益于它们与固定摄像机相比的高机动性和广阔视野。多 无人机追踪系统可以通过从不同视角收集互补的视频片段 ,为目标提供丰富的信息,特别是当目标在某些视角中被遮挡或消失时。然而,在多无人机视觉

    2024年01月25日
    浏览(7)
  • 【AI绘图学习笔记】Latent Diffusion Model(上)——论文解读

    【AI绘图学习笔记】Latent Diffusion Model(上)——论文解读

    gihub代码 论文-Arxiv-High-Resolution Image Synthesis with Latent Diffusion Models 参考视频:【渣渣讲课】试图做一个正常讲解Latent / Stable Diffusion的成年人 中文翻译论文(这篇翻译得很好) 我们来看一些主要的生成模型: 第一个GAN生成对抗网络,可以分为判别器和生成器两个部分,总体思想

    2024年02月07日
    浏览(8)
  • [论文笔记]A COMPARE-AGGREGATE MODEL FOR MATCHING TEXT SEQUENCES

    今天带来论文A COMPARE-AGGREGATE MODEL FOR MATCHING TEXT SEQUENCES的阅读笔记。 很多NLP任务,包括阅读理解、文本蕴含和问答任务,都需要在序列之间进行比较。匹配序列间重要的单位是这些解决这些任务的关键。本篇工作提出了一个通用的比较聚合(compare-aggragate)框架执行单词级匹配,

    2024年02月09日
    浏览(24)
  • 论文笔记:Spatial-Temporal Large Language Model for Traffic Prediction

    论文笔记:Spatial-Temporal Large Language Model for Traffic Prediction

    arxiv 2024 时空+大模型

    2024年04月24日
    浏览(15)
  • BMR论文阅读笔记(Bootstrapping Multi-view Representations for Fake News Detection)

    BMR论文阅读笔记(Bootstrapping Multi-view Representations for Fake News Detection)

    论文标题:Bootstrapping Multi-view Representations for Fake News Detection 论文作者:Qichao Ying, Xiaoxiao Hu, Yangming Zhou, Zhenxing Qian, Dan Zeng, Shiming Ge 论文来源:AAAI 2023,Paper 代码来源:Code 基于深度学习的多模态 虚假新闻检测 (Fake News Detection, FND)一直饱受关注,本文发现以往关于多模态FND的研

    2024年02月05日
    浏览(15)
  • Multi Diffusion: Fusing Diffusion Paths for Controlled Image Generation——【论文笔记】

    Multi Diffusion: Fusing Diffusion Paths for Controlled Image Generation——【论文笔记】

    本文发表于ICML 2023 论文官网:MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation           文本到图像生成模型已经具有合成高质量和多样化图像的能力,但是由于难以为用户提供对生成内容的直观控制,因此将文本到图像模型部署到现实世界的应用程序仍然具有挑战

    2024年02月02日
    浏览(12)
  • A Framework for Accelerating Transformer-Based Language Model on ReRAM-Based Architecture(论文笔记)

    A Framework for Accelerating Transformer-Based Language Model on ReRAM-Based Architecture(论文笔记)

    (发现问题): 在基于RRAM的加速器中,自注意力层在收集输入序列信息的过程中,需要所有输入序列词的前一层结果,由于输入实例在不同的时间步上被串行处理。 因此,自注意层一直保持停滞,直到上一层计算的结束。这就是数据危险,增加了在基于RRAM加速器上处理基于

    2024年03月25日
    浏览(9)
  • progressive random convolutions for single domain generalization论文阅读过程

    progressive random convolutions for single domain generalization论文阅读过程

    采用的是吴恩达老师的论文阅读方法。 Multiple passes[多次通读] Read the title/abstract/figures Title Progressive 采用渐进的方式,逐步改进模型性能或逐步引入新的技术。渐进性通常表示逐步迭代和改进。 Progressively stack randconv block【重复迭代】--block(变形偏移+仿射变换)【保留语义并

    2024年02月04日
    浏览(13)
  • X2-VLM: All-In-One Pre-trained Model For Vision-Language Tasks论文笔记

    X2-VLM: All-In-One Pre-trained Model For Vision-Language Tasks论文笔记

    Title:X2-VLM: All-In-One Pre-trained Model For Vision-Language Tasks Code CLIP这一类方法只能进行图片级别的视觉和文本对齐; 也有一些方法利用预训练的目标检测器进行目标级别的视觉和文本对齐,但是只能编码目标内部的特征,无法有效表达多目标上下文关联; 本文致力于进行多粒度(

    2024年02月09日
    浏览(18)
  • Generative Diffusion Prior for Unified Image Restoration and Enhancement 论文阅读笔记

    Generative Diffusion Prior for Unified Image Restoration and Enhancement 论文阅读笔记

    这是CVPR2023的一篇用diffusion先验做图像修复和图像增强的论文 之前有一篇工作做了diffusion先验(Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song, “Denoising diffusion restoration models,” arXiv preprint arXiv:2201.11793, 2022. 2, 4, 6, 7),但这个模型只能做线性的退化,对于暗图增强这种非线性

    2024年02月15日
    浏览(19)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包