python+opencv+机器学习车牌识别 计算机竞赛

这篇具有很好参考价值的文章主要介绍了python+opencv+机器学习车牌识别 计算机竞赛。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于机器学习的车牌识别系统

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:3分

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate文章来源地址https://www.toymoban.com/news/detail-724931.html


1 课题介绍

1.1 系统简介

车牌识别这个系统,虽然传统,古老,却是包含了所有这四个特侦的一个大数据技术的缩影.

在车牌识别中,你需要处理的数据是图像中海量的像素单元;你处理的数据不再是传统的结构化数据,而是图像这种复杂的数据;如果不能在很短的时间内识别出车牌,那么系统就缺少意义;虽然一副图像中有很多的信息,但可能仅仅只有那一小块的信息(车牌)以及车身的颜色是你关心,而且这些信息都蕴含着巨大的价值。也就是说,车牌识别系统事实上就是现在火热的大数据技术在某个领域的一个聚焦,通过了解车牌识别系统,可以很好的帮助你理解大数据技术的内涵,也能清楚的认识到大数据的价值。

1.2 系统要求

  • 它基于openCV这个开源库,这意味着所有它的代码都可以轻易的获取。
  • 它能够识别中文,例如车牌为苏EUK722的图片,它可以准确地输出std:string类型的"苏EUK722"的结果。
  • 它的识别率较高。目前情况下,字符识别已经可以达到90%以上的精度。

1.3 系统架构

整体包含两个系统:

  • 车牌检测
  • 车牌字体识别(中文 + 数字 + 英文)

整体架构如下:
python+opencv+机器学习车牌识别 计算机竞赛,python,java

2 实现方式

2.1 车牌检测技术

车牌检测(Plate Detection):

对一个包含车牌的图像进行分析,最终截取出只包含车牌的一个图块。这个步骤的主要目的是降低了在车牌识别过程中的计算量。如果直接对原始的图像进行车牌识别,会非常的慢,因此需要检测的过程。在本系统中,我们使用SVM(支持向量机)这个机器学习算法去判别截取的图块是否是真的“车牌”。

车牌检测这里不详细说明, 只贴出opencv图像处理流程, 需要代码的可以留下邮箱

python+opencv+机器学习车牌识别 计算机竞赛,python,java
使用到的图像处理算法

  • 高斯模糊
  • 灰度化处理
  • Sobel算子(边缘检测)
  • 开操作
  • 闭操作
  • 仿射变换
  • 霍姆线性检测
  • 角度矫正

2.2 车牌识别技术

字符识别(Chars Recognition):

有的书上也叫Plate
Recognition,我为了与整个系统的名称做区分,所以改为此名字。这个步骤的主要目的就是从上一个车牌检测步骤中获取到的车牌图像,进行光学字符识别(OCR)这个过程。其中用到的机器学习算法是著名的人工神经网络(ANN)中的多层感知机(MLP)模型。最近一段时间非常火的“深度学习”其实就是多隐层的人工神经网络,与其有非常紧密的联系。通过了解光学字符识别(OCR)这个过程,也可以知晓深度学习所基于的人工神经网路技术的一些内容。

我们这里使用深度学习的方式来对车牌字符进行识别, 为什么不用传统的机器学习进行识别呢, 看图就知道了:
python+opencv+机器学习车牌识别 计算机竞赛,python,java
图2 深度学习(右)与PCA技术(左)的对比
可以看出深度学习对于数据的分类能力的优势。

这里博主使用生成对抗网络进行字符识别训练, 效果相当不错, 识别精度达到了98%

python+opencv+机器学习车牌识别 计算机竞赛,python,java

2.3 SVM识别字符

定义

    
    class SVM(StatModel):
    	def __init__(self, C = 1, gamma = 0.5):
    		self.model = cv2.ml.SVM_create()
    		self.model.setGamma(gamma)
    		self.model.setC(C)
    		self.model.setKernel(cv2.ml.SVM_RBF)
    		self.model.setType(cv2.ml.SVM_C_SVC)
    #训练svm
    	def train(self, samples, responses):
    		self.model.train(samples, cv2.ml.ROW_SAMPLE, responses)

调用方法,喂数据

    
    	def train_svm(self):
    		#识别英文字母和数字
    		self.model = SVM(C=1, gamma=0.5)
    		#识别中文
    		self.modelchinese = SVM(C=1, gamma=0.5)
    		if os.path.exists("svm.dat"):
    			self.model.load("svm.dat")

训练,保存模型

else:
​    			chars_train = []
​    			chars_label = []for root, dirs, files in os.walk("train\\chars2"):
    				if len(os.path.basename(root)) > 1:
    					continue
    				root_int = ord(os.path.basename(root))
    				for filename in files:
    					filepath = os.path.join(root,filename)
    					digit_img = cv2.imread(filepath)
    					digit_img = cv2.cvtColor(digit_img, cv2.COLOR_BGR2GRAY)
    					chars_train.append(digit_img)
    					#chars_label.append(1)
    					chars_label.append(root_int)
    			
    			chars_train = list(map(deskew, chars_train))
    			chars_train = preprocess_hog(chars_train)
    			#chars_train = chars_train.reshape(-1, 20, 20).astype(np.float32)
    			chars_label = np.array(chars_label)
    			print(chars_train.shape)
    			self.model.train(chars_train, chars_label)

车牌字符数据集如下

python+opencv+机器学习车牌识别 计算机竞赛,python,java
python+opencv+机器学习车牌识别 计算机竞赛,python,java

这些是字母的训练数据,同样的还有我们车牌的省份简写:

python+opencv+机器学习车牌识别 计算机竞赛,python,java

python+opencv+机器学习车牌识别 计算机竞赛,python,java

核心代码

   predict_result = []
    		roi = None
    		card_color = None
    		for i, color in enumerate(colors):
    			if color in ("blue", "yello", "green"):
    				card_img = card_imgs[i]
    				gray_img = cv2.cvtColor(card_img, cv2.COLOR_BGR2GRAY)
    				#黄、绿车牌字符比背景暗、与蓝车牌刚好相反,所以黄、绿车牌需要反向
    				if color == "green" or color == "yello":
    					gray_img = cv2.bitwise_not(gray_img)
    				ret, gray_img = cv2.threshold(gray_img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
    				#查找水平直方图波峰
    				x_histogram  = np.sum(gray_img, axis=1)
    				x_min = np.min(x_histogram)
    				x_average = np.sum(x_histogram)/x_histogram.shape[0]
    				x_threshold = (x_min + x_average)/2
    				wave_peaks = find_waves(x_threshold, x_histogram)
    				if len(wave_peaks) == 0:
    					print("peak less 0:")
    					continue
    				#认为水平方向,最大的波峰为车牌区域
    				wave = max(wave_peaks, key=lambda x:x[1]-x[0])
    				gray_img = gray_img[wave[0]:wave[1]]
    				#查找垂直直方图波峰
    				row_num, col_num= gray_img.shape[:2]
    				#去掉车牌上下边缘1个像素,避免白边影响阈值判断
    				gray_img = gray_img[1:row_num-1]
    				y_histogram = np.sum(gray_img, axis=0)
    				y_min = np.min(y_histogram)
    				y_average = np.sum(y_histogram)/y_histogram.shape[0]
    				y_threshold = (y_min + y_average)/5#U和0要求阈值偏小,否则U和0会被分成两半
    

    				wave_peaks = find_waves(y_threshold, y_histogram)
    
    				#for wave in wave_peaks:
    				#	cv2.line(card_img, pt1=(wave[0], 5), pt2=(wave[1], 5), color=(0, 0, 255), thickness=2) 
    				#车牌字符数应大于6
    				if len(wave_peaks) <= 6:
    					print("peak less 1:", len(wave_peaks))
    					continue
    				
    				wave = max(wave_peaks, key=lambda x:x[1]-x[0])
    				max_wave_dis = wave[1] - wave[0]
    				#判断是否是左侧车牌边缘
    				if wave_peaks[0][1] - wave_peaks[0][0] < max_wave_dis/3 and wave_peaks[0][0] == 0:
    					wave_peaks.pop(0)
    				
    				#组合分离汉字
    				cur_dis = 0
    				for i,wave in enumerate(wave_peaks):
    					if wave[1] - wave[0] + cur_dis > max_wave_dis * 0.6:
    						break
    					else:
    						cur_dis += wave[1] - wave[0]
    				if i > 0:
    					wave = (wave_peaks[0][0], wave_peaks[i][1])
    					wave_peaks = wave_peaks[i+1:]
    					wave_peaks.insert(0, wave)
    				
    				#去除车牌上的分隔点
    				point = wave_peaks[2]
    				if point[1] - point[0] < max_wave_dis/3:
    					point_img = gray_img[:,point[0]:point[1]]
    					if np.mean(point_img) < 255/5:
    						wave_peaks.pop(2)
    				
    				if len(wave_peaks) <= 6:
    					print("peak less 2:", len(wave_peaks))
    					continue
    				part_cards = seperate_card(gray_img, wave_peaks)
    				for i, part_card in enumerate(part_cards):
    					#可能是固定车牌的铆钉
    					if np.mean(part_card) < 255/5:
    						print("a point")
    						continue
    					part_card_old = part_card
    					w = abs(part_card.shape[1] - SZ)//2
    					
    					part_card = cv2.copyMakeBorder(part_card, 0, 0, w, w, cv2.BORDER_CONSTANT, value = [0,0,0])
    					part_card = cv2.resize(part_card, (SZ, SZ), interpolation=cv2.INTER_AREA)
    					
    					#part_card = deskew(part_card)
    					part_card = preprocess_hog([part_card])
    					if i == 0:
    						resp = self.modelchinese.predict(part_card)
    						charactor = provinces[int(resp[0]) - PROVINCE_START]
    					else:
    						resp = self.model.predict(part_card)
    						charactor = chr(resp[0])
    					#判断最后一个数是否是车牌边缘,假设车牌边缘被认为是1
    					if charactor == "1" and i == len(part_cards)-1:
    						if part_card_old.shape[0]/part_card_old.shape[1] >= 7:#1太细,认为是边缘
    							continue
    					predict_result.append(charactor)
    				roi = card_img
    				card_color = color
    				break
    				
    		return predict_result, roi, card_color#识别到的字符、定位的车牌图像、车牌颜色

2.4 最终效果

最后算法部分可以和你想要的任何UI配置到一起:

可以这样 :
python+opencv+机器学习车牌识别 计算机竞赛,python,java

也可以这样:
python+opencv+机器学习车牌识别 计算机竞赛,python,java

甚至更加复杂一点:
python+opencv+机器学习车牌识别 计算机竞赛,python,java

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

到了这里,关于python+opencv+机器学习车牌识别 计算机竞赛的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 计算机设计大赛 深度学习人脸表情识别算法 - opencv python 机器视觉

    计算机设计大赛 深度学习人脸表情识别算法 - opencv python 机器视觉

    🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习人脸表情识别系统 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/

    2024年02月21日
    浏览(273)
  • 计算机毕设 深度学习手势识别 - yolo python opencv cnn 机器视觉

    计算机毕设 深度学习手势识别 - yolo python opencv cnn 机器视觉

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月14日
    浏览(54)
  • 计算机竞赛 题目:基于机器视觉opencv的手势检测 手势识别 算法 - 深度学习 卷积神经网络 opencv python

    计算机竞赛 题目:基于机器视觉opencv的手势检测 手势识别 算法 - 深度学习 卷积神经网络 opencv python

    🔥 优质竞赛项目系列,今天要分享的是 基于机器视觉opencv的手势检测 手势识别 算法 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 普通机器视觉手势检测的基本流程如下: 其中轮廓的提取,多边形

    2024年02月07日
    浏览(47)
  • OpenCV完结篇——计算机视觉(人脸识别 || 车牌识别)

    OpenCV完结篇——计算机视觉(人脸识别 || 车牌识别)

    scaleFactor调整哈尔级联器的人脸选框使其能框住人脸 官方教程指路 每个特征都是通过从黑色矩形下的像素总和减去白色矩形下的像素总和获得的单个值 级联器模型文件位置 识别嘴就会不精确了 识别鼻子 只要不测口,还是比较准确的 测口准确度太低!!! 安装很简单,这里

    2024年02月19日
    浏览(15)
  • 计算机视觉:使用opencv实现车牌识别

    计算机视觉:使用opencv实现车牌识别

    汽车车牌识别(License Plate Recognition)是一个日常生活中的普遍应用,特别是在智能交通系统中,汽车牌照识别发挥了巨大的作用。汽车牌照的自动识别技术是把处理图像的方法与计算机的软件技术相连接在一起,以准确识别出车牌牌照的字符为目的,将识别出的数据传送至交

    2024年02月04日
    浏览(17)
  • 计算机java项目 - 基于opencv与SVM的车牌识别系统

    计算机java项目 - 基于opencv与SVM的车牌识别系统

    基于opencv与SVM的车牌识别系统 提示:适合用于课程设计或毕业设计,工作量达标,源码开放 用python3+opencv3做的中国车牌识别,包括算法和客户端界面,只有2个文件,surface.py是界面代码,predict.py是算法代码,界面不是重点所以用tkinter写得很简单。 python3.7.3 opencv4.0.0.21 numpy

    2024年02月20日
    浏览(10)
  • 计算机竞赛 机器视觉的试卷批改系统 - opencv python 视觉识别

    计算机竞赛 机器视觉的试卷批改系统 - opencv python 视觉识别

    🔥 优质竞赛项目系列,今天要分享的是 基于机器视觉的试卷系统 - opencv python 视觉识别 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🧿 更多资料, 项目分享: https://gitee.com/dancheng-senior/postgraduate 机器视觉的发展对存在的作业批改问题, 提供了有效的解决方案

    2024年02月07日
    浏览(14)
  • 计算机竞赛 深度学习+opencv+python实现昆虫识别 -图像识别 昆虫识别

    计算机竞赛 深度学习+opencv+python实现昆虫识别 -图像识别 昆虫识别

    🔥 优质竞赛项目系列,今天要分享的是 🚩 **基于深度学习的昆虫识别算法研究与实现 ** 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:4分 创新点:4分 🧿 更多资料, 项目分享: https://git

    2024年02月07日
    浏览(14)
  • 计算机竞赛 深度学习 python opencv 火焰检测识别

    计算机竞赛 深度学习 python opencv 火焰检测识别

    🔥 优质竞赛项目系列,今天要分享的是 🚩 基于深度学习的火焰识别算法研究与实现 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:4分 工作量:4分 创新点:3分 🧿 更多资料, 项目分享: https://gitee.co

    2024年02月07日
    浏览(14)
  • 计算机竞赛 深度学习 python opencv 动物识别与检测

    计算机竞赛 深度学习 python opencv 动物识别与检测

    🔥 优质竞赛项目系列,今天要分享的是 🚩 基于深度学习的动物识别算法研究与实现 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:4分 工作量:4分 创新点:3分 🧿 更多资料, 项目分享: https://gitee.co

    2024年02月07日
    浏览(14)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包