人工智能(8):Numpy的使用

这篇具有很好参考价值的文章主要介绍了人工智能(8):Numpy的使用。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1 Numpy介绍

人工智能(8):Numpy的使用,人工智能,人工智能,numpy

Numpy(Numerical Python)是一个开源的Python科学计算库,用于快速处理任意维度的数组。

Numpy支持常见的数组和矩阵操作。对于同样的数值计算任务,使用Numpy比直接使用Python要简洁的多。

Numpy使用ndarray对象来处理多维数组,该对象是一个快速而灵活的大数据容器。

2 ndarray介绍

NumPy provides an N-dimensional array type, the ndarray,

which describes a collection of “items” of the same type.

NumPy提供了一个N维数组类型ndarray,它描述了相同类型的“items”的集合。

人工智能(8):Numpy的使用,人工智能,人工智能,numpy

用ndarray进行存储:

import numpy as np
# 创建ndarray
score = np.array(
[[80, 89, 86, 67, 79],
[78, 97, 89, 67, 81],
[90, 94, 78, 67, 74],
[91, 91, 90, 67, 69],
[76, 87, 75, 67, 86],
[70, 79, 84, 67, 84],
[94, 92, 93, 67, 64],
[86, 85, 83, 67, 80]])
score

返回结果:

array([[80, 89, 86, 67, 79],
[78, 97, 89, 67, 81],
[90, 94, 78, 67, 74],
[91, 91, 90, 67, 69],
[76, 87, 75, 67, 86],
[70, 79, 84, 67, 84],
[94, 92, 93, 67, 64],
[86, 85, 83, 67, 80]])

提问:

使用Python列表可以存储一维数组,通过列表的嵌套可以实现多维数组,那么为什么还需要使用Numpy的ndarray呢?

3 ndarray与Python原生list运算效率对比

在这里我们通过一段代码运行来体会到ndarray的好处

import random
import time
import numpy as np
a = []
for i in range(100000000):
    a.append(random.random())
# 通过%time魔法方法, 查看当前行的代码运行一次所花费的时间
%time sum1=sum(a)
b=np.array(a)
%time sum2=np.sum(b)

其中第一个时间显示的是使用原生Python计算时间,第二个内容是使用numpy计算时间:

CPU times: user 852 ms, sys: 262 ms, total: 1.11 s
Wall time: 1.13 s
CPU times: user 133 ms, sys: 653 µs, total: 133 ms
Wall time: 134 ms

从中我们看到ndarray的计算速度要快很多,节约了时间。

机器学习的最大特点就是大量的数据运算,那么如果没有一个快速的解决方案,那可能现在python也在机器学习领域达不到好的效果。

人工智能(8):Numpy的使用,人工智能,人工智能,numpy

Numpy专门针对ndarray的操作和运算进行了设计,所以数组的存储效率和输入输出性能远优于Python中的嵌套列表,数组越大,Numpy的优势就越明显。

思考:

ndarray为什么可以这么快?文章来源地址https://www.toymoban.com/news/detail-724993.html

到了这里,关于人工智能(8):Numpy的使用的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 如何使用AIGC人工智能辅助开发?

    如何使用AIGC人工智能辅助开发?

    🎉欢迎来到AIGC人工智能专栏~如何使用AIGC人工智能辅助开发? ☆* o(≧▽≦)o *☆嗨~我是IT·陈寒🍹 ✨博客主页:IT·陈寒的博客 🎈该系列文章专栏:AIGC人工智能 文章作者技术和水平有限,如果文中出现错误,希望大家能指正🙏 📜 欢迎大家关注! ❤️ 在人工智能时代,

    2024年02月11日
    浏览(13)
  • 如何使用Java进行人工智能开发?

    Java作为一门面向对象的编程语言,在人工智能领域也发挥着重要作用。Java可以借助常见的机器学习库,例如TensorFlow和Keras等,进行机器学习和深度学习的开发。下面是使用Java进行人工智能开发的一些步骤和工具。 准备工作 在使用Java进行人工智能开发之前,需要掌握Java的基

    2024年02月21日
    浏览(13)
  • 人工智能安全:使用人工智能进行安全合规性应用应用应用(安全合规性应用inAI:BestPractices)

    作者:禅与计算机程序设计艺术 随着技术的飞速发展,科技创新和产业变革的加速,人工智能(AI)已经成为科技、经济、政治和社会的一项重要发展领域。同时,人工智能也面临着新的安全威胁。在人工智能安全领域中,如何运用人工智能技术解决安全合规性问题,是一个重

    2024年02月07日
    浏览(46)
  • AutoGPT自主人工智能用法和使用案例

    AutoGPT自主人工智能用法和使用案例

    介绍 AutoGPT是什么: 自主人工智能 ,不需要人为的干预,自己完成思考和决策【比如最近比较热门的用AutoGPT创业,做项目–就是比较消耗token】 AI 自己上网、自己使用第三方工具、自己思考、自己操作你的电脑【就是操作你的电脑,比如下载一些软件,运行查看结果之类的

    2023年04月20日
    浏览(13)
  • 最新人工智能GPT-4免费简单使用教程

    最新人工智能GPT-4免费简单使用教程

    GPT-4比Chatgpt升级了不少,现在还无法使用OpenAI官网或百度文心一言的小伙伴可以尝试以下方法。 打开 nat.dev 登录(sign-in注册时不用填手机号码) 选择GPT-4模型 然后直接空白处用英语或者中文输入问题 想尝试AI作图的方法如下。 打开网页 https://discord.com/ 点击“Open Discord” 发

    2023年04月25日
    浏览(14)
  • 使用 Meta Llama 3 构建人工智能的未来

    使用 Meta Llama 3 构建人工智能的未来

    使用 Meta Llama 3 构建人工智能的未来 现在提供 8B 和 70B 预训练和指令调整版本,以支持广泛的应用 我们已将 Llama 3 集成到我们的智能助手 Meta AI 中,它扩展了人们完成工作、创造和与 Meta AI 联系的方式。通过使用 Meta AI 进行编码任务和解决问题,您可以亲眼目睹 Llama 3 的性能

    2024年04月27日
    浏览(52)
  • 文心一言人工智能使用教程和操作方法

    文心一言 人工智能使用教程和操作方法 文心一言是一款由百度研发的基于人工智能技术的语言模型,它能够帮助人们回答各种各样的问题,同时还可以协助完成文本创作、智能办公、智能家居控制等多种任务。下面是文心一言的使用教程,希望能够帮助您更好地使用这款神

    2024年02月08日
    浏览(18)
  • 如何使用生成式人工智能学习第二语言?

    如何使用生成式人工智能学习第二语言?

    在今天日益全球化的世界中,学习第二语言已经成为许多人提升自我、拓宽视野的重要途径。无论是为了职业发展、加深文化理解,还是简单的旅行沟通,掌握一门外语都能带来意想不到的回报。然而,学习一门新语言绝非一蹴而就的任务;它需要科学的方法、持续的努力和

    2024年04月27日
    浏览(12)
  • 人工智能-语音识别技术paddlespeech的搭建和使用

    PaddleSpeech是百度飞桨(PaddlePaddle)开源深度学习平台的其中一个项目,它基于飞桨的语音方向模型库,用于语音和音频中的各种关键任务的开发,包含大量基于深度学习前沿和有影响力的模型。PaddleSpeech支持语音识别、语音翻译(英译中)、语音合成、标点恢复等应用示例。

    2024年02月02日
    浏览(18)
  • 使用人工智能助手 Github Copilot 进行编程 02

    使用人工智能助手 Github Copilot 进行编程 02

    本章涵盖了 在您的系统上设置 Python、VS Code 和 Copilot 引⼊ Copilot 设计流程 Copilot 的价值在于基本的数据处理任务 本章将帮助您在自己的计算机上开始使用 Copilot,并熟悉与其的交互方式。在设置好Copilot 后,我们将要求您尽可能跟随我们的示例进行操作。实践是最好的学习方

    2024年01月25日
    浏览(18)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包