【ElasticSearch系列-03】ElasticSearch的高级句法查询Query DSL

这篇具有很好参考价值的文章主要介绍了【ElasticSearch系列-03】ElasticSearch的高级句法查询Query DSL。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

ElasticSearch系列整体栏目


内容 链接地址
【一】ElasticSearch下载和安装 https://zhenghuisheng.blog.csdn.net/article/details/129260827
【二】ElasticSearch概念和基本操作 https://blog.csdn.net/zhenghuishengq/article/details/134121631
【二】ElasticSearch的高级查询Query DSL https://blog.csdn.net/zhenghuishengq/article/details/134159587

一,ElasticSearch高级查询语法Query DSL

前面两篇主要讲解了es的安装以及一些基本的概念,接下来这篇讲解的是es的高阶语法,QueryDSL。在这里主要是用ik分词器讲解,暂不使用默认的分词器。

一,Query DSL的基本使用

在安装了kibana之后,内部会有一个search的语句,用来查询数据

GET _search
{
  "query": {
    "match_all": {}
  }
}

其结果如下,默认是返回前10条数据,类似于做了分页,默认加了一个from0和一个size10,并且在es中,size默认是小于或者等于10000,如果超过这个值,就会直接抛异常

【ElasticSearch系列-03】ElasticSearch的高级句法查询Query DSL,ElasticSearch,elasticsearch,搜索引擎,java,query DSL

1.1,深分页查询Scroll

上面说了默认采用的是from加size的方式来解决分页数据返回的问题,但是size的数据是有大小的限制的,当然也可以通过以下命令来调节size的大小

PUT /zhs/_settings
{ 
  "index.max_result_window" :"20000"
}

虽然这种方式可以暂时调节size大小,但是治标不治本,因为依旧是会存在限制,并且由于数据量太大,还可能将内存撑爆。因此后面引入了这种Scroll游标的方式来查询全量数据

GET /zhs_db/_search?scroll=1m   //1m表示查询时间窗口保持1分钟
{
  "query": {"match_all": {}},
  "size": 10		//批量查询10条数据
}

在将查询的值返回中可以看出,会生成一个_scroll_id,以及返回一些分片数,查询的总条数等

【ElasticSearch系列-03】ElasticSearch的高级句法查询Query DSL,ElasticSearch,elasticsearch,搜索引擎,java,query DSL

就是比如说第一次查询10条数据,随后记录最后一条数据的id,然后在这个时间窗口期内,携带这个id再去库中拉取后十条数据,往复如此。不管是关系系数据库还是非关系型数据库,其设计思想都是这样

拉取的数据会存储在快照里面,后面的操作都是操作这个快照中缓存的数据。因此为了保证性能问题,会牺牲一些精准度,因为后面写进来的数据不在这个快照里面。

1.2,match条件查询

在使用这个match之前,先创建一个索引,并设置分词器为ik分词器

DELETE /zhs_db
PUT /zhs_db		
{
  "settings" : {
      "index" : {
          "analysis.analyzer.default.type": "ik_max_word"
      }
  }
}

先插入几条数据,先用最基础的Put的方式插入五条数据


PUT /zhs_db/_doc/1
{
"address":"东岳泰山"
}
PUT /zhs_db/_doc/2
{
"address":"西岳华山"
}
PUT /zhs_db/_doc/3
{
"address":"南岳衡山"
}
PUT /zhs_db/_doc/4
{
"address":"北岳恒山"
}
PUT /zhs_db/_doc/5
{
"address":"中岳嵩山"
}

在确定要查询某一条数据时,可以先通过这个分词分析看看是如何进行分词的

POST _analyze
{
  "analyzer": "ik_max_word",
  "text": "中岳嵩山"
}

那么可以直接通过这个match的方式批量查询数据

GET /zhs_db/_search
{
  "query": {
    "match": {
      "address": "中岳"
    }
  }
}

如果是要查询特定的某个值,可以直接再加一个operator属性,并且value设置成and,如果没有设置这个属性,那么默认值就是的or

GET /zhs_db/_search
{
  "query": {
    "match": {
      "address": {
        "query": "中岳嵩山",
        "operator": "and"
      }
    }
  }
}

除了上面的operator之外,还可以使用 minimum_should_match ,用于最小分词匹配。就是说分词器默认分为中岳和嵩山两个,只需要满足其中一个就能被查出来

address:{
    "query":"中岳嵩山""minimum_should_match": 1
}

1.3,match_phrase短语查询

在使用这个短语查询时,需要通过分词器分析,判断两个词的下标是否连续

GET /zhs_db/_search
{
  "query": {
    "match_phrase": {
      "address": "中岳嵩山"
    }
  }
}

如通过这个ik分词器分析,可以得知这两个分开的词的position是连续的,分别为0和1,如果不连续,则不能将值查询出

【ElasticSearch系列-03】ElasticSearch的高级句法查询Query DSL,ElasticSearch,elasticsearch,搜索引擎,java,query DSL

当然为了解决这个间隔问题,可以直接通过设置 slop 属性来设置允许多少个空格进行匹配

address:{
    "query":"中岳嵩山""slop": 1
}

1.4,multi_match多字段查询

上面主要讲解的是单字段查询,但是在实际开发中一般都是多字段查询,其语句如下

GET /zhs_db/_search
{
  "query": {
    "multi_match": {
      "query": "中岳嵩山",
      "fields": ["address","name"]
    }
  }
}

1.5,query_string 查询

queryString相当于是一个multi_match的一个综合版,如果没有指定具体的字段,则会在全字段中查询

GET /zhs_db/_search
{
  "query": {
    "query_string": {
      "query": "中岳"
    }
  }
}

可以设置默认的字段,也可以指定多个字段

"query_string": {
  //"default_field": "address",
  "fields": ["name","address"],
  "query": "中岳"
}

1.6,term精确匹配

上面的match属于是模糊匹配,而使用精确匹配的,就是这个term。

在ES的Mapping Type 中 keyword , date ,integer, long , double , boolean or ip 这些类型不分词,只有text类型分词。因此term在对这些数据进行查询时,就是精确匹配

GET /zhs_db/_search
{
  "query": {
    "term": {
      "address": "中岳"
    }
  }
}

如果想要对全字段进行精确匹配,可以添加一个keyword 关键字

"address.keyword": "中岳嵩山"

在es中,查询会有算分操作,而算分操作会影响到性能问题,而精确匹配是不需要算分的,可以将query转成filter,从而忽略算分所带来的影响

"query":{
    "constant_score":{
        "filter":{
            
        }
    }
}

如果短时间内存在多次term的查询,那么就会将这部分数据缓存起来

1.7,prefix前缀查询

前缀查询就是查询以某个字段开头的数据,因此用不上底层的倒排字典,而是将所有的数据遍历一遍,将符合的数据返回。由于用不上倒排索引,因此对性能是有一定的影响的

PUT /zhs_db/_search
{
    "query":{
        "prefix":{
            "address":{
                "value":"嵩山"
            }
        }
    }
}

1.8,通配符查询wildcard

通配符查询就和这个前缀查询一样,都是利用不上这个倒排索引,而是将所有的数据遍历查询一遍,符合的数据返回。

GET /zhs_db/_search
{
  "query": {
    "wildcard": {
      "address": {
        "value": "*山*"
      }
    }
  }
}

1.9,范围查询range

可以直接通过这个range关键字实现范围查询,

  • gte 大于等于
  • lte 小于等于
  • gt 大于
  • lt 小于
  • now 当前时间
POST /zhs_db/_search
{
  "query": {
    "range": {
      "age": {
        "gte": 25,
        "lte": 28
      }
    }
  }
}

1.10,fuzzy模糊查询

fuzzy表示允许在打错字的情况下,将想要查询的数据查询出来。

GET /zhs_db/_search
{
  "query": {
    "fuzzy": {
      "address": {
        "value": "松山",
        "fuzziness": 1    //表示允许错一个字
      }
    }
  }
}

除了使用上面这种方式,还能用match的方式实现这种错别字的模糊查询

GET /zhs_db/_search
{
  "query": {
    "match": {
      "address": {
        "query": "松山",
        "fuzziness": 1
      }
    }
  }
}

1.11,highlight查询

就是将query查询出来的结果,通过highlight的方式实现高亮

GET /products/_search
{
  "query": {
    "term": {
      "name": {
        "value": "牛仔"
      }
    }
  },
  "highlight": {
    "fields": {
      "*":{}
    }
  }
}

2,Query DSL多条件查询(高级查询)

2.1,Bool Query布尔查询

在一个bool查询中,可以是一个或者多个查询字句的组合,字句总共有四种,分别是 must、should、must_not、filter,前两者使用时内部会进行算分的操作,后二者不会

must相当于是and操作,即所有几句中的查询条件都要满足。如下must中是一个数组,每个子查询中就是一个正常的query dsl查询,如必须满足中地址字段中带有公园,remark字段中带有北的数据

GET /zhs_db/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "address": "公园"
          }
        },
        {
          "match": {
            "remark": "北"
          }
        }
      ]
    }
  }
}

shouuld 表示的就是一个or的应用,表示只需要满足其中的一个查询字句就能将结果返回

GET /zhs_db/_search
{
  "query": {
    "bool": {
      "should": []
    }
  }
}

2.2,Boosting Query权重查询

权重查询是一种控制手段,通过设置boost权重的值来影响最终的查询结果,权重的设置如下

  • 当设置的boost大于1时,查询的的相关性会提高
  • 当设置的boost大于0而小于1时,查询的相关性会降低
  • 当设置的boost的值为负数时,贡献负分

举一个例子,查询一篇文章时,将会员的文章显示在普通用户文章的前面,如下面的代码,先创建一个文章索引,随后插入两条数据,一条是vip用户的,一条是普通用户的,文章标题一样

PUT /article_db
POST /article_db/_bulk
{"index": {"_id": "1"}}
{"title":"java入门","comment":"精通java","type":"vip"}
{"index": {"_id": "2"}}
{"title":"java入门","comment":"精通java","type":"ordinary"}

那么在查询时,想将vip用户的文章排在前面,就可以直接通过设置这个boost权重进行设置,将vip用户的权重值设置为大于1,这样在算分时,算的分值就更大

GET /article_db/_search
{
  "query": {
    "bool": {
      "should": [
        {
          "match": {
            "title": "java入门"
          }
        },
        {
          "match": {
            "type": {
              "query": "vip",
              "boost": 3
            }
          }
        },
        {
          "match": {
            "type": {
              "query": "ordinary",
              "boost": 1
            }
          }
        }
      ]
    }
  }
}

如下图所示,vip的算分为2.6,而普通用户的算分在1.2。如果算分值一样,谁id小谁在前面

【ElasticSearch系列-03】ElasticSearch的高级句法查询Query DSL,ElasticSearch,elasticsearch,搜索引擎,java,query DSL

当然如果查询出了不需要的数据,优先考虑通过过滤去掉数据,再考虑降低其权重

2.3,Dis max query 最佳匹配

通过dis_max以及结合queries进行使用,并且可以通过设置这个tie_breaker来确人是最佳匹配,还是所有的字段的值同等重要

POST /article_db/_search
{
    "query": {
        "dis_max": {
            "queries": [
                { "match": { "title": "java" }},
                { "match": { "comment":  "java" }}
            ],
            "tie_breaker": 0.5	//0代表使用最佳匹配;1代表所有语句同等重要。
        }
    }
}

但是在实际开发中,更加的推荐通过这个multi_match这个方式来实现这个最佳字段匹配,并且设置这个type类型为 best_fields

POST /article_db/_search
{
  "query": {
    "multi_match": {
      "type": "best_fields",
      "query": "java",
      "fields": ["title","comment"],
      "tie_breaker": 0.2	//0代表使用最佳匹配;1代表所有语句同等重要。
    }
  }
}

除了实现最佳匹配之外,multi_match还实现了最多字段匹配,就是将type的类型设置成 most_fields

GET /titles/_search
{
  "query": {
    "multi_match": {
      "query": "java,
      "type": "most_fields",
      "fields": [
        "title",
        "comment"
      ]
    }
  }
}

2.4,Cross Field跨字段匹配

如在遇到某些场景,需要结合多个字段的值进行匹配,如省市区,在上面讲了一种copy_to的方式解决这种跨字段匹配的方式,也可以使用这个 Cross Field 实现多字段匹配

如先创建一个address_db的地址索引,随后批量的插入一些数据

PUT /address_db
PUT /address_db/_bulk
{ "index": { "_id": "1"} }
{"province": "广东","city": "深圳","region":"南山"}
{ "index": { "_id": "2"} }
{"province": "广东","city": "深圳","region":"福田"}
{ "index": { "_id": "3"} }
{"province": "广东","city": "深圳","region":"宝安"}
{ "index": { "_id": "4"} }
{"province": "广东","city": "深圳","region":"龙岗"}
}

随后通过这个multi_match多字段查询,并且设置type类型为 cross_fields文章来源地址https://www.toymoban.com/news/detail-738583.html

GET /address_db/_search
{
  "query": {
    "multi_match": {
      "query": "广东深圳宝安",
      "type": "cross_fields",
      "operator": "and", 
      "fields": ["province","city","region"]
    }
  }
}

到了这里,关于【ElasticSearch系列-03】ElasticSearch的高级句法查询Query DSL的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • ElasticSearch Index查询(Query DSL)

    先贴一个Query DSL的官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl.html 我平时喜欢查看官方文档,了解数据查询和存储方面的性能优化点,下面是积累的脚本分享。 查询语句格式 查询类型:match_all,match,term,range,fuzzy,bool 等等 查询条件:查询条件会根

    2024年02月07日
    浏览(12)
  • ElasticSearch级查询Query DSL上

    ElasticSearch级查询Query DSL上

    目录 ES高级查询Query DSL match_all 返回源数据_source 返回指定条数size 分页查询fromsize 指定字段排序sort 术语级别查询 Term query术语查询 Terms Query多术语查询 exists query ids query range query范围查询 prefix query前缀查询 wildcard query通配符查询 fuzzy query模糊查询        ES中提供了一种强大

    2024年02月20日
    浏览(16)
  • 一起学Elasticsearch系列-Query DSL

    一起学Elasticsearch系列-Query DSL

    本文已收录至Github,推荐阅读 👉 Java随想录 微信公众号:Java随想录 DSL是Domain Specific Language的缩写,指的是为特定问题领域设计的计算机语言。这种语言专注于某特定领域的问题解决,因而比通用编程语言更有效率。 在Elasticsearch中,DSL指的是Elasticsearch Query DSL,是一种以J

    2024年02月01日
    浏览(12)
  • 15.Elasticsearch 7.15 Query DSL 之 Wildcard查询、Regexp查询

    返回包含与通配符模式匹配的文档。 以下搜索返回 user.id 字段包含以 ki 开头并以 y 结尾的文档。这些匹配项可以包括 kiy、kity 或 kimchy (必填, 对象) 你想查询的字段 参数名 描述 boost (Optional, float) 用于降低或提高查询相关性得分的浮点数。默认为1.0。 rewrite (可选,字符串)

    2023年04月08日
    浏览(14)
  • Elasticsearch 系列(四)- DSL实现自动补全查询

    Elasticsearch 系列(四)- DSL实现自动补全查询

    本章将和大家分享如何通过 Elasticsearch 实现自动补全查询功能。 1、自动补全需求说明 当用户在搜索框输入字符时,我们应该提示出与该字符有关的搜索项,如图: 2、使用拼音分词 要实现根据字母做补全,就必须对文档按照拼音分词。在 GitHub 上恰好有 Elasticsearch 的 拼音分

    2024年03月17日
    浏览(11)
  • Elasticsearch:DSL Query

    Elasticsearch:DSL Query

    Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括: 查询所有:查询出所有的数据,一般测试用,例如:match_all,但有分页限制,一次20条左右 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。常见的有两种

    2024年02月10日
    浏览(29)
  • Elasticsearch Query DSL

    Elasticsearch Query DSL

    这里使用的 Elasticsearch 的版本为 7.12.1 。 1.1 文档(Document) ElasticSearch 是面向文档的,文档是所有可搜索数据的最小单位,例如 MySQL 的一条数据记录。 文档会被序列化成为 json 格式,保存在 ElasticSearch 中。 每个文档都有一个唯一 ID,例如 MySQL 中的主键 ID。 JSON文档 一篇文档包

    2024年02月15日
    浏览(10)
  • (5)elasticsearch的Query DSL

    官网连接: https://www.elastic.co/guide/en/elasticsearch/reference/7.10/query-filter-context.html Query DSL(Domain Specific Language) query string search 全文检索-fulltext search 精准匹配-term match 过滤器-filter 组合查询-bool query ​ 使用query进行检索,倾向于相关度搜索,故需要计算评分。搜索是Elastics

    2024年02月05日
    浏览(9)
  • elasticsearch 笔记二:搜索DSL 语法(搜索API、Query DSL)

    elasticsearch 笔记二:搜索DSL 语法(搜索API、Query DSL)

    从索引 tweet 里面搜索字段 user 为 kimchy 的记录 从索引 tweet,user 里面搜索字段 user 为 kimchy 的记录 从所有索引里面搜索字段 tag 为 wow 的记录 说明:搜索的端点地址可以是多索引多 mapping type 的。搜索的参数可作为 URI 请求参数给出,也可用 request body 给出 URI 搜索方式通过 URI

    2024年02月04日
    浏览(10)
  • ElasticSearch系列 - SpringBoot整合ES:查询条件 query 和过滤条件 filter 的区别

    01. Elasticsearch 查询条件和过滤条件的区别? Elasticsearch中的查询条件和过滤条件都是用于搜索和过滤文档的条件,但它们之间有一些区别。 查询条件是用于计算文档相关度得分的条件,它会将所有符合条件的文档按照相关度得分从高到低排序,并返回前N个文档。查询条件可以

    2024年02月14日
    浏览(12)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包