Pytorch深度强化学习案例:基于Q-Learning的机器人走迷宫

这篇具有很好参考价值的文章主要介绍了Pytorch深度强化学习案例:基于Q-Learning的机器人走迷宫。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

0 专栏介绍

本专栏重点介绍强化学习技术的数学原理,并且采用Pytorch框架对常见的强化学习算法、案例进行实现,帮助读者理解并快速上手开发。同时,辅以各种机器学习、数据处理技术,扩充人工智能的底层知识。

🚀详情:文章来源地址https://www.toymoban.com/news/detail-760300.html

到了这里,关于Pytorch深度强化学习案例:基于Q-Learning的机器人走迷宫的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 强化学习应用(一):基于Q-learning的无人机物流路径规划研究(提供Python代码)

    强化学习应用(一):基于Q-learning的无人机物流路径规划研究(提供Python代码)

    Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个价值函数来指导智能体在环境中做出决策,以最大化累积奖励。 Q-learning算法的核心思想是通过不断更新一个称为Q值的表格来学习最优策略。Q值表示在给定状态下采取某个动作所能

    2024年02月02日
    浏览(13)
  • 强化学习应用(五):基于Q-learning的无人机物流路径规划研究(提供Python代码)

    强化学习应用(五):基于Q-learning的无人机物流路径规划研究(提供Python代码)

    Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个价值函数来指导智能体在环境中做出决策,以最大化累积奖励。 Q-learning算法的核心思想是通过不断更新一个称为Q值的表格来学习最优策略。Q值表示在给定状态下采取某个动作所能

    2024年01月16日
    浏览(16)
  • 强化学习应用(六):基于Q-learning的无人机物流路径规划研究(提供Python代码)

    强化学习应用(六):基于Q-learning的无人机物流路径规划研究(提供Python代码)

    Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个价值函数来指导智能体在环境中做出决策,以最大化累积奖励。 Q-learning算法的核心思想是通过不断更新一个称为Q值的表格来学习最优策略。Q值表示在给定状态下采取某个动作所能

    2024年02月22日
    浏览(15)
  • 强化学习应用(八):基于Q-learning的无人机物流路径规划研究(提供Python代码)

    强化学习应用(八):基于Q-learning的无人机物流路径规划研究(提供Python代码)

    Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个价值函数来指导智能体在环境中做出决策,以最大化累积奖励。 Q-learning算法的核心思想是通过不断更新一个称为Q值的表格来学习最优策略。Q值表示在给定状态下采取某个动作所能

    2024年01月17日
    浏览(9)
  • 强化学习Q-learning入门

    强化学习Q-learning入门

    本文为最近学习的强化学习 Q-learning 的学习笔记,主要用于总结和日常记录,本文主要讲解相应的必备入门知识。 闲话少说,我们直接开始吧! 我们小时候都经历过以下情形:我们做错了某年事,受到了惩罚,我们学习后,在遇到类似的状况,我们将不会再犯错。同样,许

    2024年02月08日
    浏览(7)
  • 强化学习Q-learning实践

    强化学习Q-learning实践

    前篇文章介绍了强化学习系统红的基本概念和重要组成部分,并解释了 Q-learning 算法相关的理论知识。本文的目标是在 Python3 中实现该算法,并将其应用于实际的实验中。 闲话少说,我们直接开始吧! 为了使本文具有实际具体的意义,特意选择了一个简单而基本的环境,可

    2024年02月08日
    浏览(12)
  • 强化学习 - Q-learning(Q学习)

    强化学习中的 Q-learning (Q学习)是一种用于 学习在未知环境中做出决策的方法 。它是基于值函数的方法,通过学习一个值函数 Q,该函数表示在给定状态和动作下,期望的累积奖励。 以下是一个简单的 Q-learning 的实现教程,使用 Python 进行演示。这里我们考虑一个简单的驾

    2024年01月24日
    浏览(16)
  • 强化学习——Q-Learning算法原理

    强化学习——Q-Learning算法原理

    一、Q-Learning :异策略时序差分控制 从决策方式来看,强化学习可以分为 基于策略 的方法( policy-based )和 基于价值 的方法( value-based )。基于策略的方法直接对策略进行优化,使制定的的策略能够获得最大的奖励。基于价值的强化学习方法中,智能体不需要制定显式的策略,

    2024年01月23日
    浏览(13)
  • 【强化学习】Q-Learning算法详解

    【强化学习】Q-Learning算法详解

    1 Q-Learning算法简介 1.1 行为准则 我们做很多事情都有自己的行为准则,比如小时候爸妈常说:不写完作业就不准看电视。所以我们在写作业这种状态下,写的好的行为就是继续写作业,知道写完他,我们还可以得到奖励。不好的行为就是没写完就跑去看电视了,被爸妈发现,

    2024年01月16日
    浏览(19)
  • 【强化学习】常用算法之一 “Q-learning”

    【强化学习】常用算法之一 “Q-learning”

      作者主页: 爱笑的男孩。的博客_CSDN博客-深度学习,活动,python领域博主 爱笑的男孩。擅长深度学习,活动,python,等方面的知识,爱笑的男孩。关注算法,python,计算机视觉,图像处理,深度学习,pytorch,神经网络,opencv领域. https://blog.csdn.net/Code_and516?type=blog 个人简介:打工人。 持续分

    2024年02月11日
    浏览(16)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包