关于“Python”的核心知识点整理大全45

这篇具有很好参考价值的文章主要介绍了关于“Python”的核心知识点整理大全45。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

关于“Python”的核心知识点整理大全45,python,开发语言,笔记,javascript

目录

15.4.6 绘制直方图

die_visual.py

注意

15.4.7 同时掷两个骰子

dice_visual.py

15.4.8 同时掷两个面数不同的骰子

different_dice.py

15.5 小结

第 16 章

16.1 CSV 文件格式

16.1.1 分析 CSV 文件头

highs_lows.py

注意

16.1.2 打印文件头及其位置

highs_lows.py

往期快速传送门👆(在文章最后):

感谢大家的支持!欢迎订阅收藏!专栏将持续更新!


关于“Python”的核心知识点整理大全45,python,开发语言,笔记,javascript

15.4.6 绘制直方图

有了频率列表后,我们就可以绘制一个表示结果的直方图。直方图是一种条形图,指出了各 种结果出现的频率。创建这种直方图的代码如下:

die_visual.py
import pygal
--snip--
# 分析结果
frequencies = []
for value in range(1, die.num_sides+1):
 frequency = results.count(value)
 frequencies.append(frequency)
# 对结果进行可视化
1 hist = pygal.Bar()
hist.title = "Results of rolling one D6 1000 times."
2 hist.x_labels = ['1', '2', '3', '4', '5', '6']
hist.x_title = "Result"
hist.y_title = "Frequency of Result"
3 hist.add('D6', frequencies)
hist.render_to_file('die_visual.svg')

为创建条形图,我们创建了一个pygal.Bar()实例,并将其存储在hist中(见1)。接下来, 我们设置hist的属性title(用于标示直方图的字符串),将掷D6骰子的可能结果用作x轴的标签 (见2),并给每个轴都添加了标题。在3处,我们使用add()将一系列值添加到图表中(向它传递要给添加的值指定的标签,还有一个列表,其中包含将出现在图表中的值)。最后,我们将这个 图表渲染为一个SVG文件,这种文件的扩展名必须为.svg。

要查看生成的直方图,最简单的方式是使用Web浏览器。为此,在任何Web浏览器中新建一 个标签页,再在其中打开文件die_visual.svg(它位于die_visual.py所在的文件夹中)。你将看到一 个类似于图15-11所示的图表(为方便印刷,我稍微修改了这个图表;默认情况下,Pygal生成的 图表的背景比你在图15-11中看到的要暗)。

关于“Python”的核心知识点整理大全45,python,开发语言,笔记,javascript


注意

Pygal让这个图表具有交互性:如果你将鼠标指向该图表中的任何条形,将看到与之 相关联的数据。在同一个图表中绘制多个数据集时,这项功能显得特别有用。


15.4.7 同时掷两个骰子

同时掷两个骰子时,得到的点数更多,结果分布情况也不同。下面来修改前面的代码,创建 两个D6骰子,以模拟同时掷两个骰子的情况。每次掷两个骰子时,我们都将两个骰子的点数相 加,并将结果存储在results中。请复制die_visual.py并将其保存为dice_visual.py,再做如下修改:

dice_visual.py
import pygal
from die import Die
# 创建两个D6骰子
die_1 = Die()
die_2 = Die()
# 掷骰子多次,并将结果存储到一个列表中
results = []
for roll_num in range(1000):
1 result = die_1.roll() + die_2.roll()
results.append(result)
# 分析结果
frequencies = []
2 max_result = die_1.num_sides + die_2.num_sides
3 for value in range(2, max_result+1):
 frequency = results.count(value)
 frequencies.append(frequency)
# 可视化结果
hist = pygal.Bar()
4 hist.title = "Results of rolling two D6 dice 1000 times."
hist.x_labels = ['2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12']
hist.x_title = "Result"
hist.y_title = "Frequency of Result"
hist.add('D6 + D6', frequencies)
hist.render_to_file('dice_visual.svg')

创建两个Die实例后,我们掷骰子多次,并计算每次的总点数(见1)。可能出现的最大点数 12为两个骰子的最大可能点数之和,我们将这个值存储在了max_result中(见2)。可能出现的最 小总点数2为两个骰子的最小可能点数之和。分析结果时,我们计算2到max_result的各种点数出 现的次数(见3)。我们原本可以使用range(2, 13),但这只适用于两个D6骰子。模拟现实世界 的情形时,最好编写可轻松地模拟各种情形的代码。前面的代码让我们能够模拟掷任何两个骰子 的情形,而不管这些骰子有多少面。

创建图表时,我们修改了标题、x轴标签和数据系列(见4)。(如果列表x_labels比这里所示 的长得多,那么编写一个循环来自动生成它将更合适。)

运行这些代码后,在浏览器中刷新显示图表的标签页,你将看到如图15-12所示的图表。

这个图表显示了掷两个D6骰子时得到的大致结果。正如你看到的,总点数为2或12的可能性 最小,而总点数为7的可能性最大,这是因为在6种情况下得到的总点数都为7。这6种情况如下: 1和6、2和5、3和4、4和3、5和2、6和1。

关于“Python”的核心知识点整理大全45,python,开发语言,笔记,javascript

15.4.8 同时掷两个面数不同的骰子

下面来创建一个6面骰子和一个10面骰子,看看同时掷这两个骰子50 000次的结果如何:

different_dice.py
from die import Die
import pygal
# 创建一个D6和一个D10
die_1 = Die()
1 die_2 = Die(10)
# 掷骰子多次,并将结果存储在一个列表中
results = []
for roll_num in range(50000):
 result = die_1.roll() + die_2.roll()
 results.append(result)
# 分析结果
--snip--
# 可视化结果
hist = pygal.Bar()
2 hist.title = "Results of rolling a D6 and a D10 50,000 times."
hist.x_labels = ['2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12',
 '13', '14', '15', '16']
hist.x_title = "Result"
hist.y_title = "Frequency of Result"
hist.add('D6 + D10', frequencies)
hist.render_to_file('dice_visual.svg')

为创建D10骰子,我们在创建第二个Die实例时传递了实参10(见1)。我们还修改了第一个 循环,以模拟掷骰子50 000次而不是1000次。可能出现的最小总点数依然是2,但现在可能出现 的最大总点数为16,因此我们相应地调整了标题、x轴标签和数据系列标签(见2)。 图15-13显示了最终的图表。可能性最大的点数不是一个,而是5个,这是因为导致出现最小 点数和最大点数的组合都只有一种(1和1以及6和10),但面数较小的骰子限制了得到中间点数的 组合数:得到总点数7、8、9、10和11的组合数都是6种。因此,这些总点数是最常见的结果,它 们出现的可能性相同。

关于“Python”的核心知识点整理大全45,python,开发语言,笔记,javascript

通过使用Pygal来模拟掷骰子的结果,能够非常自由地探索这种现象。只需几分钟,就可以 掷各种骰子很多次。

15.5 小结

在本章中,你学习了:如何生成数据集以及如何对其进行可视化;如何使用matplotlib创建简 单的图表,以及如何使用散点图来探索随机漫步过程;如何使用Pygal来创建直方图,以及如何 使用直方图来探索同时掷两个面数不同的骰子的结果。 使用代码生成数据集是一种有趣而强大的方式,可用于模拟和探索现实世界的各种情形。完 成后面的数据可视化项目时,请注意可使用代码模拟哪些情形。请研究新闻媒体中的可视化,看 看其中是否有图表是以你在这些项目中学到的类似方式生成的。 在第16章中,我们将从网上下载数据,并继续使用matplotlib和Pygal来探索这些数据。

第 16 章

下载数据

16.1 CSV 文件格式

要在文本文件中存储数据,最简单的方式是将数据作为一系列以逗号分隔的值(CSV)写入 文件。这样的文件称为CSV文件。例如,下面是一行CSV格式的天气数据:

2014-1-5,61,44,26,18,7,-1,56,30,9,30.34,30.27,30.15,,,,10,4,,0.00,0,,195

这是阿拉斯加锡特卡2014年1月5日的天气数据,其中包含当天的最高气温和最低气温,还有 众多其他数据。CSV文件对人来说阅读起来比较麻烦,但程序可轻松地提取并处理其中的值,这 有助于加快数据分析过程。


注意 这个项目使用的天气数据是从http://www.wunderground.com/history/下载而来的。


16.1.1 分析 CSV 文件头

csv模块包含在Python标准库中,可用于分析CSV文件中的数据行,让我们能够快速提取感兴 趣的值。下面先来查看这个文件的第一行,其中包含一系列有关数据的描述:

highs_lows.py
import csv
filename = 'sitka_weather_07-2014.csv'
1 with open(filename) as f:
2 reader = csv.reader(f)
3 header_row = next(reader)
print(header_row)

导入模块csv后,我们将要使用的文件的名称存储在filename中。接下来,我们打开这个文 件,并将结果文件对象存储在f中(见1)。然后,我们调用csv.reader(),并将前面存储的文件 对象作为实参传递给它,从而创建一个与该文件相关联的阅读器(reader)对象(见2)。我们 将这个阅读器对象存储在reader中。

模块csv包含函数next(),调用它并将阅读器对象传递给它时,它将返回文件中的下一行。 在前面的代码中,我们只调用了next()一次,因此得到的是文件的第一行,其中包含文件头(见 3)。我们将返回的数据存储在header_row中。正如你看到的,header_row包含与天气相关的文件 头,指出了每行都包含哪些数据:

['AKDT', 'Max TemperatureF', 'Mean TemperatureF', 'Min TemperatureF',
'Max Dew PointF', 'MeanDew PointF', 'Min DewpointF', 'Max Humidity',
' Mean Humidity', ' Min Humidity', ' Max Sea Level PressureIn',
' Mean Sea Level PressureIn', ' Min Sea Level PressureIn',
' Max VisibilityMiles', ' Mean VisibilityMiles', ' Min VisibilityMiles',
' Max Wind SpeedMPH', ' Mean Wind SpeedMPH', ' Max Gust SpeedMPH',
'PrecipitationIn', ' CloudCover', ' Events', ' WindDirDegrees']

reader处理文件中以逗号分隔的第一行数据,并将每项数据都作为一个元素存储在列表中。 文件头AKDT表示阿拉斯加时间(Alaska Daylight Time),其位置表明每行的第一个值都是日期或 时间。文件头Max TemperatureF指出每行的第二个值都是当天的最高华氏温度。可通过阅读其他 的文件头来确定文件包含的信息类型。


注意

文件头的格式并非总是一致的,空格和单位可能出现在奇怪的地方。这在原始数据文件 中很常见,但不会带来任何问题。


16.1.2 打印文件头及其位置

为让文件头数据更容易理解,将列表中的每个文件头及其位置打印出来:

highs_lows.py
--snip--
with open(filename) as f:
 reader = csv.reader(f)
 header_row = next(reader)
1 for index, column_header in enumerate(header_row):
 print(index, column_header) 

我们对列表调用了enumerate()(见1)来获取每个元素的索引及其值。(请注意,我们删除 了代码行print(header_row),转而显示这个更详细的版本。) 输出如下,其中指出了每个文件头的索引:

0 AKDT
1 Max TemperatureF
2 Mean TemperatureF
3 Min TemperatureF
--snip--
20 CloudCover
21 Events
22 WindDirDegrees

从中可知,日期和最高气温分别存储在第0列和第1列。为研究这些数据,我们将处理 sitka_weather_07-2014.csv中的每行数据,并提取其中索引为0和1的值。


关于“Python”的核心知识点整理大全37-CSDN博客

关于“Python”的核心知识点整理大全25-CSDN博客

关于“Python”的核心知识点整理大全12-CSDN博客文章来源地址https://www.toymoban.com/news/detail-763491.html

往期快速传送门👆(在文章最后):

感谢大家的支持!欢迎订阅收藏!专栏将持续更新!

到了这里,关于关于“Python”的核心知识点整理大全45的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 关于“Python”的核心知识点整理大全8

    关于“Python”的核心知识点整理大全8

    目录 ​编辑 4.5 元组 4.5.1 定义元组 dimensions.py 4.5.2 遍历元组中的所有值 4.5.3 修改元组变量 4.6 设置代码格式 4.6.1 格式设置指南 4.6.2 缩进 4.6.3 行长 4.6.4 空行 4.6.5 其他格式设置指南 4.7 小结 第5章 if语句 5.1 一个简单示例 cars.py 5.2 条件测试 5.2.1 检查是否相等 5.2.2 检查是否相等

    2024年02月05日
    浏览(13)
  • 关于“Python”的核心知识点整理大全25

    关于“Python”的核心知识点整理大全25

    目录 10.3.4 else 代码块、 10.3.5 处理 FileNotFoundError 异常 alice.py 在这个示例中,try代码块引发FileNotFoundError异常,因此Python找出与该错误匹配的 except代码块,并运行其中的代码。最终的结果是显示一条友好的错误消息,而不是traceback: 10.3.6 分析文本 10.3.7 使用多个文件 word_cou

    2024年02月04日
    浏览(13)
  • 关于“Python”的核心知识点整理大全27

    关于“Python”的核心知识点整理大全27

    目录 10.5 小结 第11 章 测试代码 11.1 测试函数 name_function.py 函数get_formatted_name()将名和姓合并成姓名,在名和姓之间加上一个空格,并将它们的 首字母都大写,再返回结果。为核实get_formatted_name()像期望的那样工作,我们来编写一个 使用这个函数的程序。程序names.py让用户输

    2024年02月01日
    浏览(9)
  • 关于“Python”的核心知识点整理大全12

    关于“Python”的核心知识点整理大全12

    目录 6.3.3 按顺序遍历字典中的所有键 6.3.4 遍历字典中的所有值 6.4 嵌套 6.4.1 字典列表 aliens.py 6.4.2 在字典中存储列表 pizza.py favorite_languages.py 注意 往期快速传送门👆(在文章最后): 6.3.3 按顺序遍历字典中的所有键 字典总是明确地记录键和值之间的关联关系,但获取字典的

    2024年02月05日
    浏览(11)
  • 关于“Python”的核心知识点整理大全21

    关于“Python”的核心知识点整理大全21

    在Python 2.7中,继承语法稍有不同,ElectricCar类的定义类似于下面这样: 函数super()需要两个实参:子类名和对象self。为帮助Python将父类和子类关联起来,这些 实参必不可少。另外,在Python 2.7中使用继承时,务必在定义父类时在括号内指定object。 9.3.3 给子类定义属性和方法

    2024年01月16日
    浏览(12)
  • 关于“Python”的核心知识点整理大全11

    关于“Python”的核心知识点整理大全11

    目录 ​编辑 6.2.4 修改字典中的值  6.2.5 删除键—值对 注意 删除的键—值对永远消失了。  6.2.6 由类似对象组成的字典 6.3 遍历字典 6.3.1 遍历所有的键—值对 6.3.2 遍历字典中的所有键 往期快速传送门👆(在文章最后): 6.2.4 修改字典中的值 要修改字典中的值,可依次指定

    2024年02月05日
    浏览(11)
  • 关于“Python”的核心知识点整理大全19

    关于“Python”的核心知识点整理大全19

    目录 ​编辑 8.6.4 使用 as 给模块指定别名 8.6.5 导入模块中的所有函数 8.7 函数编写指南 8.8 小结 第9章 类 9.1 创建和使用类 9.1.1 创建 Dog 类 dog.py 1. 方法__init__() 2. 在Python 2.7中创建类 9.1.2 根据类创建实例 1. 访问属性 2. 调用方法 3. 创建多个实例 往期快速传送门👆(在文章最后

    2024年02月04日
    浏览(12)
  • 关于“Python”的核心知识点整理大全37

    关于“Python”的核心知识点整理大全37

    目录 13.6.2 响应外星人和飞船碰撞 game_stats.py settings.py alien_invasion.py game_functions.py ship.py 注意 13.6.3 有外星人到达屏幕底端 game_functions.py 13.6.4 游戏结束 game_stats.py game_functions.py 13.7 确定应运行游戏的哪些部分 alien_invasion.py 13.8 小结 第14 章 记 分 14.1 添加 Play 按钮 game_stats.py 往

    2024年02月04日
    浏览(16)
  • 关于“Python”的核心知识点整理大全18

    关于“Python”的核心知识点整理大全18

    目录 ​编辑 8.5 传递任意数量的实参 pizza.py 8.5.1 结合使用位置实参和任意数量实参 8.5.2 使用任意数量的实参 user_profile.py 8.6 将函数存储在模块中 8.6.1 导入整个模块 pizza.py making_pizzas.py 8.6.2 导入特定的函数 8.6.3 使用 as 给函数指定别名 关于“Python”的核心知识点整理大

    2024年02月04日
    浏览(16)
  • 关于“Python”的核心知识点整理大全43

    关于“Python”的核心知识点整理大全43

    目录 ​编辑 15.2.3 使2散点图并设置其样式 scatter_squares.py 15.2.4 使用 scatter()绘制一系列点 scatter_squares.py 15.2.5 自动计算数据 scatter_squares.py 15.2.6 删除数据点的轮廓 15.2.7 自定义颜色 15.2.8 使用颜色映射 scatter_squares.py 注意 15.2.9 自动保存图表 15.3 随机漫步 15.3.1 创建 RandomWalk()类

    2024年02月04日
    浏览(10)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包