使用Flink MySQL cdc分别sink到ES、Kafka、Hudi

这篇具有很好参考价值的文章主要介绍了使用Flink MySQL cdc分别sink到ES、Kafka、Hudi。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

环境说明

  • [flink-1.13.1-bin-scala_2.11.tgz](https://archive.apache.org/dist/flink/flink-1.13.1/flink-1.13.1-bin-scala_2.11.tgz)
  • [hadoop-2.7.3.tar.gz](https://archive.apache.org/dist/hadoop/common/hadoop-2.7.3/hadoop-2.7.3.tar.gz)
  • [flink-cdc-connectors](https://github.com/ververica/flink-cdc-connectors)(git clone源码编译)
  • [hudi](https://github.com/apache/hudi)(git clone源码编译)
  • [spark-2.4.8-bin-hadoop2.7.tgz](https://archive.apache.org/dist/spark/spark-2.4.8/spark-2.4.8-bin-hadoop2.7.tgz)
  • scala-2.11
  • oracle jdk-1.8.x

 版本问题

flink cdc与flink对应版本

https://ververica.github.io/flink-cdc-connectors/master/content/about.html#supported-flink-versions

hudi与flink版本

https://github.com/apache/hudi/issues/3689

编译所需jar包

编译flink-cdc-connectors

- 进入flink-cdc-connectors目录,修改flink-cdc-connectors/pom.xml文件中flink的版本号为1.13.1

<flink.version>1.13.1</flink.version>

- maven编译

mvn clean package -DskipTests

- 编译完成,将以下jar包拷贝到flink-1.13.1/lib下

flink-cdc-connectors/flink-sql-connector-mysql-cdc/target/flink-sql-connector-mysql-cdc-2.1-SNAPSHOT.jar

flink-cdc-connectors/flink-sql-connector-postgres-cdc/target/flink-sql-connector-postgres-cdc-2.1-SNAPSHOT.jar

flink-cdc-connectors/flink-format-changelog-json/target/flink-format-changelog-json-2.1-SNAPSHOT.jar

 编译hudi

- 进入hudi目录,修改hudi/pom.xml,修改对应组件的版本,由于flink使用的是scala-2.11版本,spark3.x版本以上默认使用scala-2.12预编译,为了节省时间,我们在此使用spark2.4.8以scala-2.11预编译的版本,对应的hadoop版本为2.7

<flink.version>1.13.1</flink.version>
<hadoop.version>2.7.3</hadoop.version>
<spark2.version>2.4.8</spark2.version>

- maven编译

mvn clean package -DskipTests
 

- 编译完成,将以下jar包拷贝到flink-1.13.1/lib下

hudi/packaging/hudi-flink-bundle/target/hudi-flink-bundle_2.11-0.10.0-SNAPSHOT.jar

- 将以下jar包拷贝到spark-2.4.8-bin-hadoop2.7/jars下

hudi/packaging/hudi-spark-bundle/target/hudi-spark-bundle_2.11-0.10.0-SNAPSHOT.jar

- 将以下jar包拷贝到hadoop-2.7.3/share/hadoop/hdfs/下

hudi/packaging/hudi-hadoop-mr-bundle/target/hudi-hadoop-mr-bundle-0.10.0-SNAPSHOT.jar

- 另外为了把数据写入ES和kafka中,需要下载以下jar包,并拷贝到flink-1.13.1/lib下

[flink-sql-connector-elasticsearch7_2.11-1.13.1.jar](https://repo1.maven.org/maven2/org/apache/flink/flink-sql-connector-elasticsearch7_2.11/1.13.1/flink-sql-connector-elasticsearch7_2.11-1.13.1.jar)

[flink-sql-connector-kafka_2.11-1.13.1.jar](https://repo1.maven.org/maven2/org/apache/flink/flink-sql-connector-kafka_2.11/1.13.1/flink-sql-connector-kafka_2.11-1.13.1.jar)

- flink sink到hudi还需要以下jar包

[flink-shaded-hadoop-2-uber-2.7.5-10.0.jar](https://repo1.maven.org/maven2/org/apache/flink/flink-shaded-hadoop-2-uber/2.7.5-10.0/flink-shaded-hadoop-2-uber-2.7.5-10.0.jar)

- 所有依赖放置完成后的flink-1.13.1/lib如下

flink cdc mysql es,大数据,Flink,大数据,Flink,FlinkCDC,Hudi

Docker中创建所需的组件

- 创建一个目录,创建一个新文件docker-compose.yml,内容如下,包含postgres mysql es kibana kafka zookeeper组件:


version: '2.1'
services:
  postgres:
    image: debezium/example-postgres:1.1
    ports:
      - "5432:5432"
    environment:
      - POSTGRES_PASSWORD=1234
      - POSTGRES_DB=postgres
      - POSTGRES_USER=postgres
      - POSTGRES_PASSWORD=postgres
  mysql:
    image: debezium/example-mysql:1.1
    ports:
      - "3306:3306"
    environment:
      - MYSQL_ROOT_PASSWORD=123456
      - MYSQL_USER=mysqluser
      - MYSQL_PASSWORD=mysqlpw
  elasticsearch:
    image: elastic/elasticsearch:7.6.0
    environment:
      - cluster.name=docker-cluster
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
      - discovery.type=single-node
    ports:
      - "9200:9200"
      - "9300:9300"
    ulimits:
      memlock:
        soft: -1
        hard: -1
      nofile:
        soft: 65536
        hard: 65536
  kibana:
    image: elastic/kibana:7.6.0
    ports:
      - "5601:5601"
  zookeeper:
    image: wurstmeister/zookeeper:3.4.6
    ports:
      - "2181:2181"
  kafka:
    image: wurstmeister/kafka:2.12-2.2.1
    ports:
      - "9092:9092"
      - "9094:9094"
    depends_on:
      - zookeeper
    environment:
      - KAFKA_ADVERTISED_LISTENERS=INSIDE://:9094,OUTSIDE://localhost:9092
      - KAFKA_LISTENERS=INSIDE://:9094,OUTSIDE://:9092
      - KAFKA_LISTENER_SECURITY_PROTOCOL_MAP=INSIDE:PLAINTEXT,OUTSIDE:PLAINTEXT
      - KAFKA_INTER_BROKER_LISTENER_NAME=INSIDE
      - KAFKA_ZOOKEEPER_CONNECT=zookeeper:2181
      - KAFKA_CREATE_TOPICS="user_behavior:1:1"
    volumes:
      - /var/run/docker.sock:/var/run/docker.sock


 

- 进入目录,启动并初始化所有容器

docker-compose build
docker-compose up -d
 

- 打开docker 应用,可以看到组件已经全部启动

flink cdc mysql es,大数据,Flink,大数据,Flink,FlinkCDC,Hudi

初始化数据

- 通过docker命令进入mysql容器内部

docker-compose exec mysql mysql -uroot -p123456
 

- 初始化MySQL数据


-- MySQL
CREATE DATABASE mydb;
USE mydb;
CREATE TABLE products (
  id INTEGER NOT NULL AUTO_INCREMENT PRIMARY KEY,
  name VARCHAR(255) NOT NULL,
  description VARCHAR(512)
);
ALTER TABLE products AUTO_INCREMENT = 101;

INSERT INTO products
VALUES (default,"scooter","Small 2-wheel scooter"),
       (default,"car battery","12V car battery"),
       (default,"12-pack drill bits","12-pack of drill bits with sizes ranging from #40 to #3"),
       (default,"hammer","12oz carpenter's hammer"),
       (default,"hammer","14oz carpenter's hammer"),
       (default,"hammer","16oz carpenter's hammer"),
       (default,"rocks","box of assorted rocks"),
       (default,"jacket","water resistent black wind breaker"),
       (default,"spare tire","24 inch spare tire");

CREATE TABLE orders (
  order_id INTEGER NOT NULL AUTO_INCREMENT PRIMARY KEY,
  order_date DATETIME NOT NULL,
  customer_name VARCHAR(255) NOT NULL,
  price DECIMAL(10, 5) NOT NULL,
  product_id INTEGER NOT NULL,
  order_status BOOLEAN NOT NULL -- 是否下单
) AUTO_INCREMENT = 10001;

INSERT INTO orders
VALUES (default, '2020-07-30 10:08:22', 'Jark', 50.50, 102, false),
       (default, '2020-07-30 10:11:09', 'Sally', 15.00, 105, false),
       (default, '2020-07-30 12:00:30', 'Edward', 25.25, 106, false);

- 通过docker命令进入postgres容器内部

docker-compose exec postgres psql -h localhost -U postgres
 

- 初始化postgres数据

-- PG
CREATE TABLE shipments (
  shipment_id SERIAL NOT NULL PRIMARY KEY,
  order_id SERIAL NOT NULL,
  origin VARCHAR(255) NOT NULL,
  destination VARCHAR(255) NOT NULL,
  is_arrived BOOLEAN NOT NULL
);
ALTER SEQUENCE public.shipments_shipment_id_seq RESTART WITH 1001;
ALTER TABLE public.shipments REPLICA IDENTITY FULL;

INSERT INTO shipments
VALUES (default,10001,'Beijing','Shanghai',false),
       (default,10002,'Hangzhou','Shanghai',false),
       (default,10003,'Shanghai','Hangzhou',false);

修改环境变量、hadoop配置文件并启动hadoop

- 修改环境变量vim ~/.zshrc 或者 vim /etc/profile


export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1.8/Contents/Home
export PATH=$PATH:$JAVA_HOME/bin

export SCALA_HOME=/xxx/xxx/xxx/xxx/xxx/xxx/scala
export PATH=$PATH:$SCALA_HOME/bin

export SPARK_HOME=/xxx/xxx/xxx/xxx/xxx/xxx/spark
export PATH=$PATH:$SPARK_HOME/bin

export MAVEN_HOME=/xxx/xxx/xxx/xxx/xxx/xxx/apache-maven
export PATH=$PATH:$MAVEN_HOME/bin

export HADOOP_HOME=/xxx/xxx/xxx/xxx/xxx/xxx/hadoop
export PATH=$PATH:$HADOOP_HOME/bin

export FLINK_HOME=/xxx/xxx/xxx/xxx/xxx/xxx/flink
export PATH=$PATH:$FLINK_HOME/bin

export PATH=/xxx/xxx/xxx/xxx/xxx/xxx/protobuf/bin:$PATH

修改完成执行命令 source ~/.zshrc 或者source /etc/profile让环境变量生效

- 修改hadoop-2.7.3/etc/hadoop/core-site.xml,如果目录不存在,给创建上

<configuration>
<property>
     <name>hadoop.tmp.dir</name> 
     <value>file:/xxx/xxx/xxx/xxx/xxx/hadoop-2.7.3/tmp</value>
  </property>
  <property>
     <name>fs.defaultFS</name>
     <value>hdfs://localhost:8020</value>
  </property>
</configuration>

- 修改hadoop-2.7.3/etc/hadoop/hdfs-site.xml,如果目录不存在,给创建上


<configuration>
<property>
         <name>dfs.replication</name>
         <value>1</value>
    </property>
    <property> 
         <name>dfs.namenode.name.dir</name>
         <value>file:/xxx/xxx/xxx/xxx/xxx/hadoop-2.7.3/dfs/name</value>
    </property>
    <property>
         <name>dfs.namenode.data.dir</name>
         <value>file:/xxx/xxx/xxx/xxx/xxx/hadoop-2.7.3/dfs/data</value>
    </property>
</configuration>

- 修改hadoop-2.7.3/etc/hadoop/yarn-site.xml


<configuration>

<!-- Site specific YARN configuration properties -->
<property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
</property>
<property>
        <name>yarn.nodemanager.env-whitelist</name>
 <value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_MAPRED_HOME</value>
</property>

</configuration>

- 修改hadoop-2.7.3/etc/hadoop/mapred-site.xml


<configuration>
<property> 
<name>mapreduce.framework.name
</name>
 <value>yarn</value>
 </property>
</configuration>

- 启动,hadoop目录下执行


./sbin/start-all.sh
# 格式化namenode
hdfs namenode -format

如果不能发现Java环境变量,建议直接修改hadoop-2.7.3/etc/hadoop/hadoop-env.sh


# export JAVA_HOME=${JAVA_HOME}
export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1.8/Contents/Home

- 启动完成,通过jps命令查看组件是否已启动,NameNode、SecondaryNameNode、DataNode、ResourceManager、NodeManager均已启动,启动完成,可以登录浏览器:http://localhost:50070/查看hdfs状态


➜  hadoop-2.7.3 jps
63696 NodeManager
63969 Jps
62178 DataNode
62805 SecondaryNameNode
63510 ResourceManager
2392 
61789 NameNode
 

flink cdc mysql es,大数据,Flink,大数据,Flink,FlinkCDC,Hudi

修改flink配置文件、并启动

- 修改flink-1.13.1/conf/flink-conf.yaml,增加slots数量,修改jobmanager的端口


# taskmanager.numberOfTaskSlots: 1
taskmanager.numberOfTaskSlots: 6
 

- 启动flink


./bin/start-cluster.sh
 

- 启动完成,使用jps命令查看进程状态,访问flink webUI http://localhost:8081/


➜  flink-1.13.1 jps
2320 SecondaryNameNode
3137 ResourceManager
3489 NodeManager
85906 TaskManagerRunner
16275 NameNode
1813 DataNode
2392 
85565 StandaloneSessionClusterEntrypoint
86431 Jps
 

flink cdc mysql es,大数据,Flink,大数据,Flink,FlinkCDC,Hudi

- 启动flink的sql client


./bin/sql-client.sh
 

创建flink cdc表,分别以mysql、pgsql作为数据源,将数据写入到es中和kafka中

分别创建mysql和pgsql的flink-sql表


--Flink SQL
-- 设置 checkpoint 间隔为 3 秒                     
Flink SQL> SET execution.checkpointing.interval = 3s;
Flink SQL> set dfs.client.block.write.replace-datanode-on-failure.enable = ture;
Flink SQL> set dfs.client.block.write.replace-datanode-on-failure.policy = NEVER;
Flink SQL> CREATE TABLE products (
   id INT,
   name STRING,
   description STRING,
   PRIMARY KEY (id) NOT ENFORCED
 ) WITH (
   'connector' = 'mysql-cdc',
   'hostname' = 'localhost',
   'port' = '3306',
   'username' = 'root',
   'password' = '123456',
   'database-name' = 'mydb',
   'table-name' = 'products'
 );

Flink SQL> CREATE TABLE orders (
   order_id INT,
   order_date TIMESTAMP(0),
   customer_name STRING,
   price DECIMAL(10, 5),
   product_id INT,
   order_status BOOLEAN,
   PRIMARY KEY (order_id) NOT ENFORCED
 ) WITH (
   'connector' = 'mysql-cdc',
   'hostname' = 'localhost',
   'port' = '3306',
   'username' = 'root',
   'password' = '123456',
   'database-name' = 'mydb',
   'table-name' = 'orders'
 );

Flink SQL> CREATE TABLE shipments (
   shipment_id INT,
   order_id INT,
   origin STRING,
   destination STRING,
   is_arrived BOOLEAN,
   PRIMARY KEY (shipment_id) NOT ENFORCED
 ) WITH (
   'connector' = 'postgres-cdc',
   'hostname' = 'localhost',
   'port' = '5432',
   'username' = 'postgres',
   'password' = 'postgres',
   'database-name' = 'postgres',
   'schema-name' = 'public',
   'table-name' = 'shipments'
 );

sink到es


Flink SQL> CREATE TABLE enriched_orders (
   order_id INT,
   order_date TIMESTAMP(0),
   customer_name STRING,
   price DECIMAL(10, 5),
   product_id INT,
   order_status BOOLEAN,
   product_name STRING,
   product_description STRING,
   shipment_id INT,
   origin STRING,
   destination STRING,
   is_arrived BOOLEAN,
   PRIMARY KEY (order_id) NOT ENFORCED
 ) WITH (
     'connector' = 'elasticsearch-7',
     'hosts' = 'http://localhost:9200',
     'index' = 'enriched_orders'
 );

Flink SQL> INSERT INTO enriched_orders
 SELECT o.*, p.name, p.description, s.shipment_id, s.origin, s.destination, s.is_arrived
 FROM orders AS o
 LEFT JOIN products AS p ON o.product_id = p.id
 LEFT JOIN shipments AS s ON o.order_id = s.order_id;

- 打开kibana webUI  http://localhost:5601/,创建索引

flink cdc mysql es,大数据,Flink,大数据,Flink,FlinkCDC,Hudi

flink cdc mysql es,大数据,Flink,大数据,Flink,FlinkCDC,Hudi

- 修改 mysql 和 postgres 里面的数据,观察 elasticsearch 里的结果


-- 修改MySQL
INSERT INTO orders
VALUES (default, '2020-07-30 15:22:00', 'Jark', 29.71, 104, false);

-- 修改PG
INSERT INTO shipments
VALUES (default,10004,'Shanghai','Beijing',false);

-- 修改MySQL
UPDATE orders SET order_status = true WHERE order_id = 10004;

-- 修改PG
UPDATE shipments SET is_arrived = true WHERE shipment_id = 1004;

-- 修改MySQL
DELETE FROM orders WHERE order_id = 10004;

sink到kafka


--Flink SQL
Flink SQL> CREATE TABLE kafka_gmv (
   day_str STRING,
   gmv DECIMAL(10, 5)
 ) WITH (
     'connector' = 'kafka',
     'topic' = 'kafka_gmv',
     'scan.startup.mode' = 'earliest-offset',
     'properties.bootstrap.servers' = 'localhost:9092',
     'format' = 'changelog-json'
 );

Flink SQL> INSERT INTO kafka_gmv
 SELECT DATE_FORMAT(order_date, 'yyyy-MM-dd') as day_str, SUM(price) as gmv
 FROM orders
 WHERE order_status = true
 GROUP BY DATE_FORMAT(order_date, 'yyyy-MM-dd');

-- 读取 Kafka 的 changelog 数据,观察 materialize 后的结果
Flink SQL> SELECT * FROM kafka_gmv;

- 观察kafka的数据


docker-compose exec kafka bash -c 'kafka-console-consumer.sh --topic kafka_gmv --bootstrap-server kafka:9092 --from-beginning'

- 更新 orders 数据,观察SQL CLI 和 kafka console 的输出


-- 更新MySQL
UPDATE orders SET order_status = true WHERE order_id = 10001;
UPDATE orders SET order_status = true WHERE order_id = 10002;
UPDATE orders SET order_status = true WHERE order_id = 10003;

INSERT INTO orders
VALUES (default, '2020-07-30 17:33:00', 'Timo', 50.00, 104, true);

UPDATE orders SET price = 40.00 WHERE order_id = 10005;

DELETE FROM orders WHERE order_id = 10005;

flink cdc mysql es,大数据,Flink,大数据,Flink,FlinkCDC,Hudi

sink到hudi

- 创建flink-hudi表


Flink SQL> CREATE TABLE enriched_orders_hudi (
   order_id INT PRIMARY KEY NOT ENFORCED,
   order_date TIMESTAMP(3),
   customer_name STRING,
   price DOUBLE,
   product_id INT,
   order_status BOOLEAN,
   `partition` VARCHAR(20)
 ) PARTITIONED BY (`partition`) WITH (
    'connector' = 'hudi'
    ,'write.precombine.field' = 'order_date'
    ,'table.type' = 'MERGE_ON_READ'
    ,'path' = 'hdfs://localhost:9000/hudi/enriched_orders_hudi'
    ,'compaction.tasks' = '1'
        ,'compaction.trigger.strategy' = 'num_or_time'
        ,'compaction.delta_commits' = '10'
        ,'compaction.delta_seconds' = '10'
        ,'read.tasks' = '1'
        ,'read.streaming.enabled' = 'true'
        ,'hoodie.datasource.query.type' = 'snapshot'
        ,'read.streaming.check-interval' = '10'
        ,'hoodie.datasource.merge.type' = 'payload_combine'
        ,'read.utc-timezone' = 'false'
);
-- 插入数据
Flink SQL> INSERT INTO enriched_orders_hudi
    SELECT *,DATE_FORMAT(order_date, 'yyyyMMdd')
    FROM orders;
-- 查看表是否有数据
Flink SQL> select customer_name,sum(price) as sum_price from enriched_orders_hudi group by customer_name;

spark-sql使用hudi已有数据,创建spark-sql hudi表

- 启动spark-sql,必须用带以下参数的方式启动


spark-sql --packages org.apache.hudi:hudi-spark-bundle_2.11:0.9.0,org.apache.spark:spark-avro_2.11:2.4.4 \
--conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer' \
--conf 'spark.sql.extensions=org.apache.spark.sql.hudi.HoodieSparkSessionExtension'

- 创建spark-sql hudi表,不指定schema,自适应,分区,主键为可选


create table if not exists enriched_orders_hudi 
using hudi
location 'hdfs://localhost:9000/hudi/enriched_orders_hudi'
options (
  type = 'mor',
  primaryKey = 'order_id',
  preCombineField = 'order_date'
 ) 
partitioned by (`partition`);

- 验证


-- 在mysql的orders表中数据
INSERT INTO orders
VALUES 
(default, default, 'A君', 500.50, 102, false),
(default, default, 'B君', 100.00, 105, false);

INSERT INTO orders
VALUES 
(default, default, 'C君', 500.50, 102, false),
(default, default, 'D君', 100.00, 105, false);
-- 分别在flink sql client 和spark-sql cli执行
Flink SQL> select customer_name,sum(price) as sum_price from enriched_orders_hudi group by customer_name;
spark-sql> select customer_name,sum(price) as sum_price from enriched_orders_hudi group by customer_name;
-- 效果分别如下两图
-- 更新、删除自行演示

flink cdc mysql es,大数据,Flink,大数据,Flink,FlinkCDC,Hudi

flink cdc mysql es,大数据,Flink,大数据,Flink,FlinkCDC,Hudi

遇到的问题

- 由于我是单节点的hadoop,单个datanode会触发数据写入hdfs失败,报错信息如下:

Failed to replace a bad datanode on the existing pipeline due to no more good datanodes being available to try.

网上文章大部分都是让修改hdfs-site.xml添加两个配置项:


<property>
<name>dfs.client.block.write.replace-datanode-on-failure.enable</name>
<value>true</value>
</property>
<property>
<name>dfs.client.block.write.replace-datanode-on-failure.policy</name>
<value>NEVER</value>
</property>

但并不起效,因为导致这一问题的原因是客户端产生的不是服务端产生的,所以,需要修改hdfs的客户端,那么当前使用的是spark-sql,因此客户端就是spark-sql所持有的hdfs client,因此需要在启动spark-sql之后设置两个参数:


spark-sql> set dfs.client.block.write.replace-datanode-on-failure.enable = ture;
spark-sql> set dfs.client.block.write.replace-datanode-on-failure.policy = NEVER;

报错问题解决,并且可以通过insert into往hudi插入数据,通过select * from table查到hudi中的数据。

- http-request java.lang.NoSuchMethodError: io.javalin.core.CachedRequestWrapper.getContentLengthLong()J

flink cdc mysql es,大数据,Flink,大数据,Flink,FlinkCDC,Hudi

解决办法:

直接给官方提issue https://github.com/apache/hudi/issues/3797,问题解决

flink cdc mysql es,大数据,Flink,大数据,Flink,FlinkCDC,Hudi

flink cdc mysql es,大数据,Flink,大数据,Flink,FlinkCDC,Hudi文章来源地址https://www.toymoban.com/news/detail-769003.html

到了这里,关于使用Flink MySQL cdc分别sink到ES、Kafka、Hudi的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 【flink番外篇】4、flink的sink(内置、mysql、kafka、redis、clickhouse、分布式缓存、广播变量)介绍及示例(8) - 完整版

    一、Flink 专栏 Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。 1、Flink 部署系列 本部分介绍Flink的部署、配置相关基础内容。 2、Flink基础系列 本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的datastream api用法、四大基石等内容。 3、

    2024年02月04日
    浏览(18)
  • 基于 Dinky + FlinkSQL + Flink CDC 同步 MySQL 数据到 Elasticsearch、Kafka

    基于 Dinky + FlinkSQL + Flink CDC 同步 MySQL 数据到 Elasticsearch、Kafka

    Dinky 是一个开箱即用的一站式实时计算平台以 Apache Flink 为基础,连接 OLAP 和数据湖等众多框架致力于流批一体和湖仓一体的建设与实践。本文以此为FlinkSQL可视化工具。 Flink SQL 使得使用标准 SQL 开发流式应用变得简单,免去代码开发。 Flink CDC 本文使用 MySQL CDC 连接器 允许从

    2024年02月16日
    浏览(10)
  • 【flink番外篇】4、flink的sink(内置、mysql、kafka、redis、clickhouse、分布式缓存、广播变量)介绍及示例(1) - File、Socket、console

    一、Flink 专栏 Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。 1、Flink 部署系列 本部分介绍Flink的部署、配置相关基础内容。 2、Flink基础系列 本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的datastream api用法、四大基石等内容。 3、

    2024年02月01日
    浏览(15)
  • ApacheStreamPark2.1.0部署及执行flink-cdc任务同步mysql表的数据到es的实践

    ApacheStreamPark2.1.0部署及执行flink-cdc任务同步mysql表的数据到es的实践

    ApacheStreamPark是流处理极速开发框架,流批一体 湖仓一体的云原生平台,一站式流处理计算平台。   特性中的简单易用和文档详尽这两点我也是深有体会的,部署一点都不简单,照着官方文档都不一定能搞出来,下面部署环节慢慢来吐槽吧。   之前我们写 Flink SQL 基本上

    2024年02月11日
    浏览(13)
  • 使用 Flink CDC 实现 MySQL 数据,表结构实时入 Apache Doris

    现有数据库:mysql 数据:库表较多,每个企业用户一个分库,每个企业下的表均不同,无法做到聚合,且表可以被用户随意改动,增删改列等,增加表 分析:用户自定义分析,通过拖拽定义图卡,要求实时,点击确认即出现相应结果,其中有无法预判的过滤 问题:随业务增长

    2023年04月08日
    浏览(7)
  • 【Flink-Kafka-To-RocketMQ】使用 Flink 自定义 Sink 消费 Kafka 数据写入 RocketMQ

    这里的 maven 依赖比较冗余,推荐大家都加上,后面陆续优化。 注意: 1、此程序中所有的相关配置都是通过 Mysql 读取的(生产环境中没有直接写死的,都是通过配置文件动态配置),大家实际测试过程中可以将相关配置信息写死。 2、此程序中 Kafka 涉及到了 Kerberos 认证操作

    2024年02月03日
    浏览(12)
  • Flink CDC 实时mysql到mysql

    Flink CDC 实时mysql到mysql

    CDC 的全称是 Change Data Capture ,在广义的概念上,只要是能捕获数据变更的技术,我们都可以称之为 CDC 。目前通常描述的 CDC 技术主要面向数据库的变更,是一种用于捕获数据库中数据变更的技术。 mysqlcdc需要mysql开启binlog,找到my.cnf,在 [mysqld] 中加入如下信息 [mysqld]

    2024年02月12日
    浏览(13)
  • Flink CDC MySQL同步MySQL错误记录

    Flink CDC MySQL同步MySQL错误记录

    0、相关Jar包 https://repo1.maven.org/maven2/org/apache/flink/flink-connector-jdbc/3.1.1-1.16/ https://repo1.maven.org/maven2/com/ververica/flink-sql-connector-mysql-cdc/3.0.0/ 或者从mvnrepository.com下载 https://mvnrepository.com/artifact/com.ververica/flink-sql-connector-mysql-cdc https://mvnrepository.com/artifact/org.apache.flink/flink-connector-

    2024年02月03日
    浏览(11)
  • 40、Flink 的Apache Kafka connector(kafka source 和sink 说明及使用示例) 完整版

    40、Flink 的Apache Kafka connector(kafka source 和sink 说明及使用示例) 完整版

    一、Flink 专栏 Flink 专栏系统介绍某一知识点,并辅以具体的示例进行说明。 1、Flink 部署系列 本部分介绍Flink的部署、配置相关基础内容。 2、Flink基础系列 本部分介绍Flink 的基础部分,比如术语、架构、编程模型、编程指南、基本的datastream api用法、四大基石等内容。 3、

    2024年02月05日
    浏览(14)
  • 最新版Flink CDC MySQL同步MySQL(一)_flink 连接mysql(1)

    最新版Flink CDC MySQL同步MySQL(一)_flink 连接mysql(1)

    下载 连接器 SQL jar (或 自行构建 )。 将下载的jar包放在FLINK_HOME/lib/. 重启Flink集群。 注意 :目前2.4以上版本需要进行自行编译构建。本文笔者自行进行构建上传的 6.使用 Flink CDC 对 MySQL 进行流式 ETL 本教程将展示如何使用 Flink CDC 快速构建 MySQL的流式 ETL。 假设我们将产品数

    2024年04月26日
    浏览(14)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包