线性代数的本质——几何角度理解

这篇具有很好参考价值的文章主要介绍了线性代数的本质——几何角度理解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

B站网课来自 3Blue1Brown的翻译版,看完醍醐灌顶,强烈推荐:

线性代数的本质

本课程从几何的角度翻译了线代中各种核心的概念及性质,对做题和练习效果有实质性的提高,下面博主来总结一下自己的理解


1.向量的本质

在物理中的理解是一个有起点和终点的方向矢量,而在计算机科学中的理解——更像是某种类似于列表的结构体(只不过这是一种以数字为元素的列表)。

如何用几何思想理解线性代数,线性代数,线性代数,机器学习,矩阵,考研

对应在数学的领域,可以理解为一种坐标——分别用列表中的项来对应起点与终点(二维向量)。 

如何用几何思想理解线性代数,线性代数,线性代数,机器学习,矩阵,考研

而向量加法的本质,即为对应维度上的线性相消。 而另一种理解为,向量是空间中的某种运动,在不同维度上的线性抵消,如下图——这一性质也可以扩展到n维

如何用几何思想理解线性代数,线性代数,线性代数,机器学习,矩阵,考研

2.向量的坐标

首先理解单位向量的概念——i(1,0),j(0,1),由i与j的线性相加可以得到空间中的任一向量~

而向量【-3,2】,可以将两个元素理解为2个标量——即对向量的拉伸与压缩。

基向量,也就是单位向量,即为所谓拉伸与压缩的对象!

两个数型向量的相加,被称为这2个向量的线性组合~

对于线性的一种理解:只允许1个标量变化,其余n-1个维度的坐标固定,所产生的向量集即为一条直线!

3.张成空间

定义:所有可以表示为给定向量线性组合的向量的集合。

  • 对于二维,表示所有二维空间中向量的集合,亦或终点相同的向量的集合
  • 对于三维,表示一个平面或者一个空间

4.线性相关与线性无关

  • 所谓线性相关,即向量组中至少有一个是多余的,即没有对张成空间的形成做出贡献——换句话说,有至少一个向量可由其他向量线性相加获得(线性组合
  • 而所谓线性无关,即每一个向量的存在都会使得张成空间的维度增加

如何用几何思想理解线性代数,线性代数,线性代数,机器学习,矩阵,考研

5.矩阵的本质——线性变换

所谓变化,其实就是函数的一种花哨说法~

本质上,向量a是由i和j的一个线性组合,而空间发生变化后a1则变为了同样发生变化的i1与j1与原来保持一致的线性组合

如何用几何思想理解线性代数,线性代数,线性代数,机器学习,矩阵,考研

所以,如果将变化后的i1与j1按照列向量合集表示,如下图,即形成了所谓的矩阵

也就是说,在二维空间的线性变换,仅由4个数就可以决定

如何用几何思想理解线性代数,线性代数,线性代数,机器学习,矩阵,考研 此刻若给出一个矩阵和一个已知变量 ,即可得出:对该向量进行目标矩阵的变换后可以得出的新向量!

如何用几何思想理解线性代数,线性代数,线性代数,机器学习,矩阵,考研

关于上面的一个理解,不要晕:所谓的5/7,本质上的意味是:a=5i+7j,也就是说,所谓的目标向量,本质也是对i和j的一种变化!!!而为什么有的变化就是向量,而有的变化就是矩阵呢?那是因为,所谓的5/7,他对应的均为当前方向上的变化——即翻倍延长,而矩阵中,第一行的变化,均为在i方向上的变化,而第二行则全部对应j方向的变化——也就是说,矩阵变化后的i1和j1,实际上是在两个方向上同时变化!!!因此不难理解矩阵乘法的底层逻辑:这里第一行乘以第一列的意义,实际上是原来对应的5i,在i变成i1后所需要对应的变化——即i方向变3,j方向变2!第二行也是同理~此刻即使扩展到n维,这一原理仍成立!

 再进行一个更炸裂的理解:所谓m行n列的矩阵,m即为当前基向量的个数——即坐标系的维度,而所谓的mn列,即为对原始的基向量,需要进行几维的线性变换!

因此,我们可以说:矩阵的本质就是一种线性变换!(也就是作用于向量的函数)

6.矩阵的乘法

如果将矩阵理解为一种线性变换,那么矩阵的相乘本质即为连续的线性变换~

如何用几何思想理解线性代数,线性代数,线性代数,机器学习,矩阵,考研

注意一个细节——同函数一致,需要向右往左看!

如何用几何思想理解线性代数,线性代数,线性代数,机器学习,矩阵,考研

如何用几何思想理解线性代数,线性代数,线性代数,机器学习,矩阵,考研

对于相乘后得到的矩阵:第一列即为第一个矩阵进行变换变为i1后,第二个矩阵使他变换为了i2;j2的诞生亦是如此~

至于乘法的规则,再描述一遍:如上的1/1,即为对i的变化,现在需要将i1变化为i2,则需要再对i1进行i和j两个维度上的一次变化! 所以i1的i方向1在i上变0,j上变1;j1的i方向上2而j方向上变0!

非常抽象,需要反复琢磨!

7.三维空间中的线性变换

如何用几何思想理解线性代数,线性代数,线性代数,机器学习,矩阵,考研

同二维平面一致,此处仅需要9个数,即可完成三维空间下的线性变换,将这9个数组为三维向量。

此处对3维方阵与向量的乘积做出如下两种理解:

  • 首先,按列看,1~3列可以分别对应为基向量i、j、k的线性变换,而按行看,则代表i、j、k向量在当前所对应的维度上各自的变化量。
  •  另一种解释,如上图,xyz后面的向量,实际意义是经过线性变换后坐标系里的基向量,而此刻把xyz可以理解为一种给定的标量,并作用于当前变换后的基向量

8.行列式

单位正方形:在二维平面内,以i和j两个基向量为边所圈成的正方形

行列式的本质,即为线性变换对原面积改变的比例——行列式的值即为对面积的缩放比例数值

如何用几何思想理解线性代数,线性代数,线性代数,机器学习,矩阵,考研

  • 在二维平面里,如果行列式的值为负,本质是在将矩阵翻转~
  • 在三维空间里,行雷士的值即为对应体积的缩放比例~

在三维的情况下,当行列式为0时,即当前的体积被压缩为0,几何角度的理解为:存在共线向量、共面甚至重合的一个点!——这便是所谓线性相关的几何意义。

这也从某种角度解释了——为什么对应的行列式为0的向量组必然线性相关,实质上还是那个理解,存在未对维度变化做出贡献的向量

(可以说,空间压缩的本质是行列式为0)

9.线性方程组

首先要注意——线性方程组存在的意义和向量的乘法非常的类似~

如何用几何思想理解线性代数,线性代数,线性代数,机器学习,矩阵,考研

如上是一种非常具有技巧性的理解:方程组可以表示为矩阵与向量的积

其中系数矩阵A本质上就是对于向量的某种函数;而这里的向量是一个未知数,由x/y/z三个未知的数值表示。

如何用几何思想理解线性代数,线性代数,线性代数,机器学习,矩阵,考研

上述Ax=v的理解可以有两种:

  • 矩阵代表一种线性变换,在一元函数中可以理解为k、b这样的常数,而xyz组成的向量本质上就是一元函数中的自变量
  • 同理,依旧可以理解为,xyz是对当前经过矩阵A变换后的新的基向量的数值,则这一方程本质上变为了求解标量xyz的过程

 10.逆矩阵

顾名思义,几何意义即为逆向的线性变换

存在的意义为,A-1和A可以相互抵消,形成一个本质上什么都做的变换,这样的变换又被称为恒等变换

单位矩阵E的集合意义在这里就解释得同了:对角线为1的性质,带来了仅对当前向量的基向量所对应维度的变换,且倍数为1。

11.秩

本质为线性变换后的空间维数(国内的课本定义为:非0子式的最高阶数......)

秩为1表示变换后的直线落在一条一维的线上,秩为2表示为二维空间

列空间:所有可能得输出向量所构成的集合——所以秩也可以定义为列空间的维数

满秩:秩数与列数相等

12.非方阵的矩阵

如何用几何思想理解线性代数,线性代数,线性代数,机器学习,矩阵,考研

如上图,结合一个具体的例子产生矩阵的数值意义:2列代表着,输入空间有两个基向量,即该向量的张成空间可以理解为是二维的;而3行,又意味着每一个基向量又有3个坐标组成。而这样一个三行两列的句子,意味着空间中的一个平面。

总的来说,矩阵的行数即为当前向量坐标的个数,而列数则是基向量的个数~

如何用几何思想理解线性代数,线性代数,线性代数,机器学习,矩阵,考研

因此这里提出一个比较炸裂的理解:为什么不是方阵的矩阵均没有行列式呢?这是因为,方阵与向量的积不会改变向量的维度,而矩阵本身又是一个线性变换,所以可以理解为乘以对应的行列式——即某个倍数;而矩阵乘以一个向量,会改变向量的维度!因此在不同的维度下讨论倍数,便不再具有意义。这里打个比方,有一桶水,所谓的伸缩本质上就是给水桶里添加/减少容量的过程,而如果水洒了一地,维度改变,即不再具有倍数的讨论

13.特征值与特征向量

特征值:衡量特征向量在变换中拉伸或压缩的比例的因子~

特征向量:线性变换中不离开自己张成空间的特殊向量~

(一部分暂不展开更细的讲解,之后有机会更新)文章来源地址https://www.toymoban.com/news/detail-787417.html

到了这里,关于线性代数的本质——几何角度理解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 线性代数本质系列(一)向量,线性组合,线性相关,矩阵

    线性代数本质系列(一)向量,线性组合,线性相关,矩阵

    本系列文章将从下面不同角度解析线性代数的本质,本文是本系列第一篇 向量究竟是什么? 向量的线性组合,基与线性相关 矩阵与线性相关 矩阵乘法与线性变换 三维空间中的线性变换 行列式 逆矩阵,列空间,秩与零空间 克莱姆法则 非方阵 点积与对偶性 叉积 以线性变换

    2024年02月04日
    浏览(18)
  • 线性代数的本质 2 线性组合、张成的空间、基

    线性代数的本质 2 线性组合、张成的空间、基

    基于3Blue1Brown视频的笔记          对于一个向量,比如说,如何看待其中的3和-2?         一开始,我们往往将其看作长度(从向量的首走到尾部,分别在x和y上走的长度)。         在有了数乘后,我们可以将其 视为对向量进行缩放的标量,缩放的对象是两个特殊

    2024年02月20日
    浏览(10)
  • 线性代数的本质(十一)——复数矩阵

    矩阵 A A A 的元素 a i j ∈ C a_{ij}inComplex a ij ​ ∈ C ,称为复矩阵。现将实数矩阵的一些概念推广到复数矩阵,相应的一些性质在复数矩阵同样适用。 定义 :设复矩阵 A = ( a i j ) m × n A=(a_{ij})_{mtimes n} A = ( a ij ​ ) m × n ​ 矩阵 A ˉ = ( a i j ‾ ) bar A=(overline{a_{ij}}) A ˉ = ( a i

    2024年02月03日
    浏览(15)
  • 线性代数 - 几何原理

    线性代数 - 几何原理

    欢迎阅读这篇关于线性代数的文章。在这里,我们将从一个全新的角度去探索线性代数,不再仅仅局限于数值计算,而是深入理解其背后的几何原理。我们将一起探讨向量、线性变换、矩阵、行列式、点乘、叉乘、基向量等核心概念,以及它们如何在实际问题中发挥作用。无

    2024年02月05日
    浏览(11)
  • 线性代数的本质(四)——行列式

    线性代数的本质(四)——行列式

    行列式引自对线性方程组的求解。考虑两个方程的二元线性方程组 { a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 begin{cases} a_{11}x_1+a_{12}x_2=b_1 \\\\ a_{21}x_1+a_{22}x_2=b_2 end{cases} { a 11 ​ x 1 ​ + a 12 ​ x 2 ​ = b 1 ​ a 21 ​ x 1 ​ + a 22 ​ x 2 ​ = b 2 ​ ​ 可使用消元法,得 ( a 11 a 22 − a

    2024年02月07日
    浏览(15)
  • 简单的线性代数与几何

    最后编辑于 2024-01-04 本文中所有作为下标的代数均为正整数 存储 向量是表示方向的量, 在不同维度的下向量的数据长度有所不同; 记录时以轴的顺序记录在不同轴上的坐标 : { x(第0轴的坐标) , y(第1轴的坐标), z(第2轴的坐标)…} 代码中使用数值的指针并携带长度属性代替大部

    2024年02月02日
    浏览(7)
  • 【线性代数】矩阵求导的本质与分子布局、分母布局的本质(矩阵求导——本质篇)

    【线性代数】矩阵求导的本质与分子布局、分母布局的本质(矩阵求导——本质篇)

    我将严谨地说明矩阵求导的本质与分子布局、分母布局的本质。希望对初学的同学、想理解本质的同学提供一些帮助。 注1 :看懂本文只需了解本科阶段高等数学的偏导如何求、本科阶段线性代数的矩阵的定义,无需任何其他知识。 注2 :本文若无特殊说明,则约定向量均为列

    2024年02月10日
    浏览(10)
  • 线性代数行列式的几何含义

    线性代数行列式的几何含义

    行列式可以看做是一系列列向量的排列,并且每个列向量的分量可以理解为其对应标准正交基下的坐标。 行列式有非常直观的几何意义,例如: 二维行列式按列向量排列依次是 a mathbf{a} a 和 b mathbf{b} b ,可以表示 a mathbf{a} a 和 b mathbf{b} b 构成的平行四边形的面积 ∣ a b ∣

    2024年02月11日
    浏览(17)
  • 线性代数的本质笔记(3B1B课程)

    线性代数的本质笔记(3B1B课程)

    最近在复习线代,李永乐的基础课我刷了一下,感觉讲的不够透彻,和我当年学线代的感觉一样,就是不够形象。 比如,行列式为什么那么重要,它的含义究竟是什么?特征值到底代表了什么?等等。说白了,我需要几何直观的理解。 几何直观解决的问题是,我为什么要用

    2024年02月11日
    浏览(38)
  • 线性代数本质系列(二)矩阵乘法与复合线性变换,行列式,三维空间线性变换

    线性代数本质系列(二)矩阵乘法与复合线性变换,行列式,三维空间线性变换

    本系列文章将从下面不同角度解析线性代数的本质,本文是本系列第二篇 向量究竟是什么? 向量的线性组合,基与线性相关 矩阵与线性相关 矩阵乘法与复合线性变换 三维空间中的线性变换 行列式 逆矩阵,列空间,秩与零空间 克莱姆法则 非方阵 点积与对偶性 叉积 以线性

    2024年02月02日
    浏览(15)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包