(26)Linux 进程通信之共享内存(共享储存空间)

这篇具有很好参考价值的文章主要介绍了(26)Linux 进程通信之共享内存(共享储存空间)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

共享内存是System V版本的最后一个进程间通信方式。共享内存,顾名思义就是允许两个不相关的进程访问同一个逻辑内存,共享内存是两个正在运行的进程之间共享和传递数据的一种非常有效的方式。不同进程之间共享的内存通常为同一段物理内存。进程可以将同一段物理内存连接到他们自己的地址空间中,所有的进程都可以访问共享内存中的地址。如果某个进程向共享内存写入数据,所做的改动将立即影响到可以访问同一段共享内存的任何其他进程。

1、共享内存的通信原理 

在Linux中,每个进程都有属于自己的进程控制块(PCB)和地址空间(Addr Space),并且都有一个与之对应的页表,负责将进程的虚拟地址与物理地址进行映射,通过内存管理单元(MMU)进行管理。两个不同的虚拟地址通过页表映射到物理空间的同一区域,它们所指向的这块区域即共享内存。

共享内存原理图:
(26)Linux 进程通信之共享内存(共享储存空间),Linux学习之路,linux,运维,服务器

 上图:当两个进程通过页表将虚拟地址映射到物理地址时,在物理地址中有一块共同的内存区,即共享内存,这块内存可以被两个进程同时看到。这样当一个进程进行写操作,另一个进程读操作就可以实现进程间通信。但是,我们要确保一个进程在写的时候不能被读,因此我们使用信号量来实现同步与互斥。

对于一个共享内存,实现采用的是引用计数的原理,当进程脱离共享存储区后,计数器减一,挂架成功时,计数器加一,只有当计数器变为零时,才能被删除。当进程终止时,它所附加的共享存储区都会自动脱离。

(26)Linux 进程通信之共享内存(共享储存空间),Linux学习之路,linux,运维,服务器

2、为什么共享内存速度最快?

借助上图说明:Proc A 进程给内存中写数据, Proc B 进程从内存中读取数据,在此期间一共发生了两次复制

(1)Proc A 到共享内存       (2)共享内存到 Proc B

因为直接在内存上操作,所以共享内存的速度也就提高了。

最简单的共享内存的使用流程

  • ①ftok函数生成键值
  • ②shmget函数创建共享内存空间
  • ③shmat函数获取第一个可用共享内存空间的地址
  • ④shmdt函数进行分离(对共享存储段操作结束时的步骤,并不是从系统中删除共享内存和结构)
  • ⑤shmctl函数进行删除共享存储空间

3、ftok函数生成键值 

每一个共享存储段都有一个对应的键值(key)相关联(消息队列、信号量也同样需要)。

//使用此函数,需导入此头文件
#include <sys/types.h>
#include <sys/ipc.h>

key_t ftok(const char *pathname, int proj_id);
  • const char *pathname: 一个以null结尾的字符串,表示文件系统中文件的路径。文件应该在调用ftok()时存在。在多个进程中生成相同的键时,需要使用相同的文件路径。
  • int proj_id: 一个非零的整数,作为生成键的种子。在多个进程中生成相同的键时,需要使用相同的proj_id。
     

返回值:成功返回键值(相当于32位的int)。出错返回-1

总之,ftok() 是一个标准C库函数,用于为System V IPC对象生成键。它需要提供文件系统中文件的路径和一个非零整数作为参数。通过使用相同的文件路径和非零整数,可以在多个进程之间生成相同的键,以便共享IPC对象。 

例如:key_t key = ftok( “/tmp”, 66);

 4、shmget函数创建共享存储空间并返回一个共享存储标识符

所需头文件:#include<sys/shm.h>

函数原型: int shmget(key_t key, size_t size, int shmflg);
  • [参数key]:由ftok生成的key标识,标识系统的唯一IPC资源。
  • [参数size]:需要申请共享内存的大小。在操作系统中,申请内存的最小单位为页,一页是4k字节,为了避免内存碎片,我们一般申请的内存大小为页的整数倍。
  • [参数shmflg]:如果要创建新的共享内存,需要使用IPC_CREAT,IPC_EXCL,如果是已经存在的,可以使用IPC_CREAT或直接传0。
  • [返回值]:成功时返回一个新建或已经存在的的共享内存标识符,取决于shmflg的参数。失败返回-1并设置错误码。

例如:int id = shmget(key,4096,IPC_CREAT|IPC_EXCL|0666);创建一个大小为4096个字节的权限为0666(所有用户可读可写,具体查询linux权限相关内容)的共享存储空间,并返回一个整形共享存储标识符,如果key值已经存在有共享存储空间了,则出错返回-1。

     int id = shmget(key,4096,IPC_CREAT|0666);创建一个大小为4096个字节的权限为0666(所有用户可读可写,具体查询linux权限相关内容)的共享存储空间,并返回一个共享存储标识符,如果key值已经存在有共享存储空间了,则直接返回一个共享存储标识符。

(26)Linux 进程通信之共享内存(共享储存空间),Linux学习之路,linux,运维,服务器

 

 5、shmat 函数:挂接共享内存

//使用此函数,需导入此头文件
#include <sys/types.h>
#include <sys/shm.h>

void *shmat(int shmid, const void *shmaddr, int shmflg);
  • int shmid: 一个整数,表示共享内存段的标识符(ID)。这个值通常是通过调用 shmget() 函数获得的。
  • const void *shmaddr: 一个指针,表示附加共享内存段的首选地址。通常将此参数设置为NULL,让系统自动选择一个合适的地址。
  • int shmflg: 一个整数,表示附加共享内存段的标志。常用标志包括:
  •     SHM_RDONLY: 以只读方式附加共享内存段。
  •     0: 以读写方式附加共享内存段。

返回值:

  • 成功时,shmat() 返回一个非空指针,表示共享内存段在当前进程地址空间的起始地址。
  • 失败时,返回 (void *)-1,并设置相应的 errno。

总之,shmat() 是一个Linux系统调用函数,用于将共享内存段附加到当前进程的地址空间。它需要提供共享内存段的标识符、首选地址和标志作为参数。成功时,它会返回一个指向共享内存段起始地址的指针,用于后续的内存访问操作。 

6、shmctl ( ):销毁共享内存 

int shmctl(int shmid, int cmd, struct shmid_ds *buf);
  • [参数shmid]:共享存储段标识符。
  • [参数cmd]:指定的执行操作,设置为IPC_RMID时表示可以删除共享内存。
  • [参数*buf]:设置为NULL即可。
  • [返回值]:成功返回0,失败返回-1。

7、shmdt函数进行分离 

  • 当不需要对此共享内存进行操作时候,调用shmdt函数进行分离,不是删除此共享存储空间哟。
  • 所需头文件:#include<sys/shm.h>
  • 函数原型: int shmdt(const void *addr);
  • addr为shmat函数返回的地址指针
  • 返回值:成功返回0;错误返回-1

例如:int ret = shmdt(addr);
下面是一个例子,希望对你对上面的内容理解有所帮助。

comm.hpp:

#pragma once

#include <iostream>
#include <cstdio>
#include <unistd.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <cassert>
#include <cstring>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include "Log.hpp"

using namespace std; //不推荐

#define PATH_NAME "/home/whb"
#define PROJ_ID 0x66
#define SHM_SIZE 4096 //共享内存的大小,最好是页(PAGE: 4096)的整数倍

#define FIFO_NAME "./fifo"

class Init
{
public:
    Init()
    {
        umask(0);
        int n = mkfifo(FIFO_NAME, 0666);
        assert(n == 0);
        (void)n;
        Log("create fifo success",Notice) << "\n";
    }
    ~Init()
    {
        unlink(FIFO_NAME);
        Log("remove fifo success",Notice) << "\n";
    }
};

#define READ O_RDONLY
#define WRITE O_WRONLY

int OpenFIFO(std::string pathname, int flags)
{
    int fd = open(pathname.c_str(), flags);
    assert(fd >= 0);
    return fd;
}

void Wait(int fd)
{
    Log("等待中....", Notice) << "\n";
    uint32_t temp = 0;
    ssize_t s = read(fd, &temp, sizeof(uint32_t));
    assert(s == sizeof(uint32_t));
    (void)s;
}

void Signal(int fd)
{
    uint32_t temp = 1;
    ssize_t s = write(fd, &temp, sizeof(uint32_t));
    assert(s == sizeof(uint32_t));
    (void)s;
    Log("唤醒中....", Notice) << "\n";
}

void CloseFifo(int fd)
{
    close(fd);
}

Log.hpp:

#ifndef _LOG_H_
#define _LOG_H_

#include <iostream>
#include <ctime>

#define Debug   0
#define Notice  1
#define Warning 2
#define Error   3


const std::string msg[] = {
    "Debug",
    "Notice",
    "Warning",
    "Error"
};

std::ostream &Log(std::string message, int level)
{
    std::cout << " | " << (unsigned)time(nullptr) << " | " << msg[level] << " | " << message;
    return std::cout;
}


#endif

Makefile:

.PHONY:all
all:shmClient shmServer

shmClient:shmClient.cc
	g++ -o $@ $^ -std=c++11
shmServer:shmServer.cc
	g++ -o $@ $^ -std=c++11
.PHONNY:clean
clean:
	rm -f shmClient shmServer

shmServer.cc:

#include "comm.hpp"

// 是不是对应的程序,在加载的时候,会自动构建全局变量,就要调用该类的构造函数 -- 创建管道文件
// 程序退出的时候,全局变量会被析构,自动调用析构函数,会自动删除管道文件
Init init; 

string TransToHex(key_t k)
{
    char buffer[32];
    snprintf(buffer, sizeof buffer, "0x%x", k);
    return buffer;
}

int main()
{
    // 我们之前为了通信,所做的所有的工作,属于什么工作呢:让不同的进程看到了同一份资源(内存)
    // 1. 创建公共的Key值
    key_t k = ftok(PATH_NAME, PROJ_ID);
    assert(k != -1);

    Log("create key done", Debug) << " server key : " << TransToHex(k) << endl;

    // 2. 创建共享内存 -- 建议要创建一个全新的共享内存 -- 通信的发起者
    int shmid = shmget(k, SHM_SIZE, IPC_CREAT | IPC_EXCL | 0666); //
    if (shmid == -1)
    {
        perror("shmget");
        exit(1);
    }
    Log("create shm done", Debug) << " shmid : " << shmid << endl;

    // sleep(10);
    // 3. 将指定的共享内存,挂接到自己的地址空间
    char *shmaddr = (char *)shmat(shmid, nullptr, 0);
    Log("attach shm done", Debug) << " shmid : " << shmid << endl;

    // sleep(10);

    // 这里就是通信的逻辑了
    // 将共享内存当成一个大字符串
    // char buffer[SHM_SIZE];
    // 结论1: 只要是通信双方使用shm,一方直接向共享内存中写入数据,另一方,就可以立马看到对方写入的数据。
    //         共享内存是所有进程间通信(IPC),速度最快的!不需要过多的拷贝!!(不需要将数据给操作系统)
    // 结论2: 共享内存缺乏访问控制!会带来并发问题 【如果我想一定程度的访问控制呢? 能】
    
    int fd = OpenFIFO(FIFO_NAME, READ);
    for(;;)
    {
        Wait(fd);

        // 临界区
        printf("%s\n", shmaddr);
        if(strcmp(shmaddr, "quit") == 0) break;
        // sleep(1);
    }
    // 4. 将指定的共享内存,从自己的地址空间中去关联
    int n = shmdt(shmaddr);
    assert(n != -1);
    (void)n;
    Log("detach shm done", Debug) << " shmid : " << shmid << endl;
    // sleep(10);

    // 5. 删除共享内存,IPC_RMID即便是有进程和当下的shm挂接,依旧删除共享内存
    n = shmctl(shmid, IPC_RMID, nullptr);
    assert(n != -1);
    (void)n;
    Log("delete shm done", Debug) << " shmid : " << shmid << endl;

    CloseFifo(fd);
    return 0;
}

shmClient.cc:文章来源地址https://www.toymoban.com/news/detail-793799.html

#include "comm.hpp"

int main()
{
    Log("child pid is : ", Debug) << getpid() << endl;
    key_t k = ftok(PATH_NAME, PROJ_ID);
    if (k < 0)
    {
        Log("create key failed", Error) << " client key : " << k << endl;
        exit(1);
    }
    Log("create key done", Debug) << " client key : " << k << endl;

    // 获取共享内存
    int shmid = shmget(k, SHM_SIZE, 0);
    if(shmid < 0)
    {
        Log("create shm failed", Error) << " client key : " << k << endl;
        exit(2);
    }
    Log("create shm success", Error) << " client key : " << k << endl;

    // sleep(10);

    char *shmaddr = (char *)shmat(shmid, nullptr, 0);
    if(shmaddr == nullptr)
    {
        Log("attach shm failed", Error) << " client key : " << k << endl;
        exit(3);
    }
    Log("attach shm success", Error) << " client key : " << k << endl;
    // sleep(10);

    int fd = OpenFIFO(FIFO_NAME, WRITE);
    // 使用
    // client将共享内存看做一个char 类型的buffer
    while(true)
    {
        ssize_t s = read(0, shmaddr, SHM_SIZE-1);
        if(s > 0)
        {
            shmaddr[s-1] = 0;
            Signal(fd);
            if(strcmp(shmaddr,"quit") == 0) break;
        }
    }

    CloseFifo(fd);
   

    // 去关联
    int n = shmdt(shmaddr);
    assert(n != -1);
    Log("detach shm success", Error) << " client key : " << k << endl;
    // sleep(10);

    // client 要不要chmctl删除呢?不需要!!

    return 0;
}

到了这里,关于(26)Linux 进程通信之共享内存(共享储存空间)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【Linux】进程间通信——管道/共享内存

    进程间通信( Inter-Process Communication,简称IPC )是指不同进程之间进行数据交换和共享信息的机制和技术。在操作系统中,每个进程都是独立运行的,有自己的地址空间和数据,因此进程之间需要一种机制来进行通信,以便彼此协调工作、共享数据或者进行同步操作。 进程间

    2024年02月16日
    浏览(12)
  • 【Linux】进程间通信之共享内存

    共享内存比管道快哦~ 文章目录 前言 一、共享内存的实现原理 二、实现共享内存的代码 总结 共享内存区是最快的IPC形式。一旦这样的内存映射到共享它的进程的地址空间,这些进程间数据传递不再涉及到内核,换句话说是进程不再通过执行进入内核的系统调用来传递彼此的

    2024年02月03日
    浏览(19)
  • 进程间通信--共享内存详解【Linux】

    本文详细讲解了共享内存的原理和使用,并且通过实例代码角度来深度理解共享内存,下面就让我们开始吧。 数据传输:一个进程需要将它的数据发送给另一个进程 资源共享:多个进程之间共享同样的资源。 通知事件:一个进程需要向另一个或一组进程发送消息,通知它(

    2024年02月02日
    浏览(10)
  • Linux 共享内存mmap,进程通信

    进程间通信是操作系统中重要的概念之一,使得不同的进程可以相互交换数据和进行协作。其中,共享内存是一种高效的进程间通信机制,而内存映射(mmap)是实现共享内存的一种常见方法。 存储映射 I/O 是 一个磁盘文件 与 存储空间中的一个缓冲区相映射 。于是, 当从缓

    2024年02月13日
    浏览(11)
  • Linux--进程间的通信-共享内存

    前文: Linux–进程间的通信-匿名管道 Linux–进程间的通信–进程池 Linux–进程间的通信-命名管道 对于两个进程,通过在内存开辟一块空间(操作系统开辟的),进程的虚拟地址通过页表映射到对应的共享内存空间中,进而实现通信 ; 特点和作用: 高效性: 共享内存是一种

    2024年04月26日
    浏览(11)
  • 【hello Linux】进程间通信——共享内存

    目录 前言: 1. System V共享内存 1. 共享内存的理解 2. 共享内存的使用步骤 3. 共享内存的使用         1. 共享内存的创建         查看共享内存         2. 共享内存的释放         3. 共享内存的挂接         4. 共享内存的去挂接 4. 共享内存的使用示例 1. 两进

    2024年02月01日
    浏览(50)
  • 【Linux】进程间的通信之共享内存

    利用 内存共享 进行进程间的通信的原理其实分为以下几个步骤: 在物理内存中创建一块共享内存。 将共享内存链接到要通信的进程的页表中,并通过页表进行进程地址空间的映射。 进程地址空间映射完毕以后返回首个虚拟地址,以便于进程之间进行通信。 根据共享内存的

    2024年02月09日
    浏览(19)
  • 【Linux】进程间通信 -- system V共享内存

    共享内存区是最快的IPC形式。一旦这样的内存映射到共享它的进程的地址空间,这些进程间数据传递不再涉及到内核,换句话说是进程不再通过执行进入内核的系统调用来传递彼此的数据 理解: 进程间通信,是专门设计的,用来IPC 共享内存是一种通信方式,所有想通信的进程

    2024年02月16日
    浏览(13)
  • 【Linux】进程间通信——system V共享内存

    目录  写在前面的话 System V共享内存原理 System V共享内存的建立 代码实现System V共享内存 创建共享内存shmget() ftok() 删除共享内存shmctl() 挂接共享内存shmat() 取消挂接共享内存shmdt() 整体通信流程的实现          上一章我们讲了进程间通信的第一种方式 --- 管道,这一章我

    2024年02月14日
    浏览(11)
  • 【Linux】进程间通信之共享内存/消息队列/信号量

    共享内存是通过让不同的进程看到同一个内存块的方式。 我们知道,每一个进程都会有对应的PCB-task_struct ,独立的进程地址空间,然后通过页表将地址映射到物理内存中。此时我们就可以让OS在内存中申请一块空间,然后将创建好的内存空间映射到进程的地址空间中,两个需

    2024年02月05日
    浏览(17)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包