【现代密码学】笔记 补充7-- CCA安全与认证加密《introduction to modern cryphtography》

这篇具有很好参考价值的文章主要介绍了【现代密码学】笔记 补充7-- CCA安全与认证加密《introduction to modern cryphtography》。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

写在最前面

主要在 哈工大密码学课程 张宇老师课件 的基础上学习记录笔记。

内容补充:骆婷老师的PPT
《introduction to modern cryphtography》–Jonathan Katz, Yehuda Lindell(现代密码学——原理与协议)中相关章节
密码学复习笔记 这个博主好有意思

初步笔记,如有错误请指正

快速补充一些密码相关的背景知识


【现代密码学】笔记 补充7-- CCA安全与认证加密《introduction to modern cryphtography》,密码学,笔记,安全,gpt,网络,网络安全

7 CCA安全与认证加密

  1. 本节学习用于抵抗CCA攻击的加密方案以及同时保证通信机密性和真实性的认证加密方案。

  2. 目录:CCA安全加密,认证加密,确定性加密,密钥派生函数。

  3. 回顾CCA不可区分实验

    • CCA不可区分实验 P r i v K A , Π c c a ( n ) \mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi}(n) PrivKA,Πcca(n):
      1. 挑战者生成密钥 k ← G e n ( 1 n ) k \gets \mathsf{Gen}(1^n) kGen(1n);(为了下一步的预言机)
      2. A \mathcal{A} A 被给予输入 1 n 1^n 1n 和对加密函数 E n c k ( ⋅ ) \mathsf{Enc}_k(\cdot) Enck()和解密函数 D e c k ( ⋅ ) \mathsf{Dec}_k(\cdot) Deck()预言机访问(oracle access) A E n c k ( ⋅ ) \mathcal{A}^{\mathsf{Enc}_k(\cdot)} AEnck() A D e c k ( ⋅ ) \mathcal{A}^{\mathsf{Dec}_k(\cdot)} ADeck(),输出相同长度 m 0 , m 1 m_0, m_1 m0,m1
      3. 挑战者生成随机比特 b ← { 0 , 1 } b \gets \{0,1\} b{0,1},将挑战密文 c ← E n c k ( m b ) c \gets \mathsf{Enc}_k(m_b) cEnck(mb) 发送给 A \mathcal{A} A
      4. A \mathcal{A} A 继续对除了挑战密文 c c c之外的预言机的访问,输出 b ′ b' b;如果 b ′ = b b' = b b=b,则 A \mathcal{A} A成功 P r i v K A , Π c c a = 1 \mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi}=1 PrivKA,Πcca=1,否则 0。
    • 定义:一个加密方案是CCA安全的,如果实验成功的概率与1/2之间的差异是可忽略的。
  4. 消息传递方案

    • 我们先不直接处理CCA安全,而是研究一个比CCA更安全的通信场景,其中引入了之前学习的真实性要求;
    • CCA安全与消息的真实性有关,下面学习同时保护消息机密性和真实性的消息传递方案。
    • 密钥生成(Key-generation) 算法输出 k ← G e n ′ ( 1 n ) k \gets \mathsf{Gen'}(1^n) kGen(1n). k = ( k 1 , k 2 ) k = (k_1,k_2) k=(k1,k2). k 1 ← G e n E ( 1 n ) k_1 \gets \mathsf{Gen}_E(1^n) k1GenE(1n), k 2 ← G e n M ( 1 n ) k_2 \gets \mathsf{Gen}_M(1^n) k2GenM(1n).
    • 消息传递(Message transmission )算法由 E n c k 1 ( ⋅ ) \mathsf{Enc}_{k_1}(\cdot) Enck1() M a c k 2 ( ⋅ ) \mathsf{Mac}_{k_2}(\cdot) Mack2() 生成,输出 c ← E n c M a c ′ k 1 , k 2 ( m ) c \gets \mathsf{EncMac'}_{k_1,k_2}(m) cEncMack1,k2(m).
    • 解密(Decryption)算法由 D e c k 1 ( ⋅ ) \mathsf{Dec}_{k_1}(\cdot) Deck1() V r f y k 2 ( ⋅ ) \mathsf{Vrfy}_{k_2}(\cdot) Vrfyk2() 生成,输出 m ← D e c k 1 , k 2 ′ ( c ) m \gets \mathsf{Dec}'_{k_1,k_2}(c) mDeck1,k2(c) ⊥ \bot .
    • 正确性需求: D e c k 1 , k 2 ′ ( E n c M a c k 1 , k 2 ′ ( m ) ) = m \mathsf{Dec}'_{k_1,k_2}(\mathsf{EncMac}'_{k_1,k_2}(m)) = m Deck1,k2(EncMack1,k2(m))=m.
    • 注:在消息传递方案中,消息被加密并且被MAC。在解密算法中,当密文没有通过真实性验证时,输出空(可以理解为“报错”);这意味着未认证的密文无法解密。
  5. 定义安全消息传递

    • 先定义保护真实性的认证通信,然后定义同时保护机密性和真实性的认证加密。
    • 安全消息传递实验(secure message transmission A u t h A , Π ′ ( n ) \mathsf{Auth}_{\mathcal{A},\Pi'}(n) AuthA,Π(n):
      • k = ( k 1 , k 2 ) ← G e n ′ ( 1 n ) k = (k_1,k_2) \gets \mathsf{Gen}'(1^n) k=(k1,k2)Gen(1n).
      • A \mathcal{A} A 输入 1 n 1^n 1n 和对 E n c M a c ′ k \mathsf{EncMac'}_k EncMack的预言机访问,并输出 c ← E n c M a c ′ k ( m ) c \gets \mathsf{EncMac'}_{k}(m) cEncMack(m).
      • m : = D e c k ′ ( c ) m := \mathsf{Dec}'_k(c) m:=Deck(c). A u t h A , Π ′ ( n ) = 1    ⟺    m ≠ ⊥ ∧    m ∉ Q \mathsf{Auth}_{\mathcal{A},\Pi'}(n) = 1 \iff m \ne \bot \land\; m \notin \mathcal{Q} AuthA,Π(n)=1m=m/Q.
    • 定义: Π ′ \Pi' Π 实现认证通信( authenticated communication),如果 ∀ \forall ppt A \mathcal{A} A, ∃    n e g l \exists\; \mathsf{negl} negl 使得, Pr ⁡ [ A u t h A , Π ′ ( n ) = 1 ] ≤ n e g l ( n ) . \Pr[\mathsf{Auth}_{\mathcal{A},\Pi'}(n) = 1] \le \mathsf{negl}(n). Pr[AuthA,Π(n)=1]negl(n).
    • 定义: Π ′ \Pi' Π 是安全的认证加密(secure Authenticated Encryption (A.E.)), 如果其既是CCA安全的也是实现了认证通信。
    • 问题:CCA安全意味着A.E.吗?(作业)
  6. 关于认证加密的例题

    • 如果认为是安全的,那么利用反证法证明;
    • 如果认为是不安全的,那么或者可以伪造消息,或者破解明文;
  7. 加密和认证组合

    • 加密和认证如何组合来同时保护机密性和真实性?
    • 加密并认证(Encrypt-and-authenticate) (例如, SSH): c ← E n c k 1 ( m ) ,    t ← M a c k 2 ( m ) . c \gets \mathsf{Enc}_{k_1}(m),\; t \gets \mathsf{Mac}_{k_2}(m). cEnck1(m),tMack2(m).
    • 先认证后加密(Authenticate-then-encrypt) (例如, SSL): t ← M a c k 2 ( m ) ,    c ← E n c k 1 ( m ∥ t ) . t \gets \mathsf{Mac}_{k_2}(m),\; c \gets \mathsf{Enc}_{k_1}(m\| t). tMack2(m),cEnck1(mt).
    • 先加密后认证(Encrypt-then-authenticate) (例如, IPsec): c ← E n c k 1 ( m ) ,    t ← M a c k 2 ( c ) . c \gets \mathsf{Enc}_{k_1}(m),\; t \gets \mathsf{Mac}_{k_2}(c). cEnck1(m),tMack2(c).
  8. 分析组合的安全性

    • 采用全或无(All-or-nothing)分析,即一种组合方案要么在全部情况下都是安全的,要么只要存在一个不安全的反例就被认为是不安全的;
    • 加密并认证: M a c k ′ ( m ) = ( m , M a c k ( m ) ) \mathsf{Mac}'_k(m) = (m, \mathsf{Mac}_k(m)) Mack(m)=(m,Mack(m)).
      • 这表明,认证可能泄漏消息。
    • 先认证后加密:
      • 一个例子:
        • T r a n s : 0 → 00 ; 1 → 10 / 01 \mathsf{Trans}: 0 \to 00; 1 \to 10/01 Trans:000;110/01;
        • E n c ′ \mathsf{Enc}' Enc 采用CTR模式; c = E n c ′ ( T r a n s ( m ∥ M a c ( m ) ) ) c = \mathsf{Enc}'(\mathsf{Trans}(m\| \mathsf{Mac}(m))) c=Enc(Trans(mMac(m))).
        • c c c 的前两个比特翻转并且验证密文是否有效。 10 / 01 → 01 / 10 → 1 10/01 \to 01/10 \to 1 10/0101/101, 00 → 11 → ⊥ 00 \to 11 \to \bot 0011.
          • 明文为1时,不改变明文;明文为0时,解密无效
        • 如果可以有效解密,则意味着消息的第一比特是1,否则是0;
        • 对于任何MAC,这都不是CCA安全的;
      • 这个例子表明,缺乏完整性保护时,敌手可解密,而密文是否有效也价值1个比特的信息。
    • 先加密后认证: 解密: 如果 V r f y ( ⋅ ) = 1 \mathsf{Vrfy}(\cdot) = 1 Vrfy()=1, 那么 D e c ( ⋅ ) \mathsf{Dec}(\cdot) Dec(); 否则,输出 ⊥ \bot 。下面来证明。
  9. 构造AE/CCA安全的加密方案

    • 思想:令解密预言机没用。AE/CCA =CPA-then-MAC。
    • Π E = ( G e n E , E n c , D e c ) \Pi_E = (\mathsf{Gen}_E, \mathsf{Enc}, \mathsf{Dec}) ΠE=(GenE,Enc,Dec), Π M = ( G e n M , M a c , V r f y ) \Pi_M = (\mathsf{Gen}_M, \mathsf{Mac}, \mathsf{Vrfy}) ΠM=(GenM,Mac,Vrfy). Π ′ \Pi' Π:
      • G e n ′ ( 1 n ) \mathsf{Gen}'(1^n) Gen(1n): k 1 ← G e n E ( 1 n ) k_1 \gets \mathsf{Gen}_E(1^n) k1GenE(1n) and k 2 ← G e n M ( 1 n ) k_2 \gets \mathsf{Gen}_M(1^n) k2GenM(1n)
      • E n c k 1 , k 2 ′ ( m ) \mathsf{Enc}'_{k_1,k_2}(m) Enck1,k2(m): c ← E n c k 1 ( m ) c \gets \mathsf{Enc}_{k_1}(m) cEnck1(m), t ← M a c k 2 ( c ) t \gets \mathsf{Mac}_{k_2}(c) tMack2(c) and output < c , t > \left< c,t \right> c,t
      • D e c k 1 , k 2 ′ ( < c , t > ) = D e c k 1 ( c )  if  V r f y k 2 ( c , t ) = ? 1 ;  otherwise  ⊥ \mathsf{Dec}'_{k_1,k_2}(\left< c,t \right>) = \mathsf{Dec}_{k_1}(c)\ \text{if}\ \mathsf{Vrfy}_{k_2}(c,t) \overset{?}{=} 1;\ \text{otherwise}\ \bot Deck1,k2(c,t)=Deck1(c) if Vrfyk2(c,t)=?1; otherwise 
    • 加密时,先加密后对密文做认证;解密时,先验证,若未通过验证,则输出空,否则解密。
  10. AE/CCA安全加密方案证明

    • 定理:如果 Π E \Pi_E ΠE 是CPA安全的私钥加密方案并且 Π M \Pi_M ΠM 是一个安全的MAC,那么构造 Π ′ \Pi' Π 是CCA安全的。

    • 证明: V Q \mathsf{VQ} VQ (有效查询): A \mathcal{A} A 向预言机 D e c ′ \mathsf{Dec}' Dec提交一个新查询并且 V r f y = 1 \mathsf{Vrfy}=1 Vrfy=1注:VQ表示敌手向预言机查询可经过验证并解密。

    • Pr ⁡ [ P r i v K A , Π ′ c c a ( n ) = 1 ] ≤ Pr ⁡ [ V Q ] + Pr ⁡ [ P r i v K A , Π ′ c c a ( n ) = 1 ∧ V Q ‾ ] \Pr[\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi'}(n)=1] \le \Pr[\mathsf{VQ}] + \Pr[\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi'}(n)=1 \land \overline{\mathsf{VQ}}] Pr[PrivKA,Πcca(n)=1]Pr[VQ]+Pr[PrivKA,Πcca(n)=1VQ]

    • 我们需要证明以下:

      • Pr ⁡ [ V Q ] \Pr[\mathsf{VQ}] Pr[VQ] 是可忽略的;敌手无法利用解密预言机获得有效查询;

      • Pr ⁡ [ P r i v K A , Π ′ c c a ( n ) = 1 ∧ V Q ‾ ] ≤ 1 2 + n e g l ( n ) \Pr[\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi'}(n)=1 \land \overline{\mathsf{VQ}}] \le \frac{1}{2} + \mathsf{negl}(n) Pr[PrivKA,Πcca(n)=1VQ]21+negl(n);在无法利用解密预言机时难以破解加密方案。

  11. 证明敌手无法利用解密预言机获得有效查询

    • 思路:将 A M \mathcal{A}_M AM (有预言机 M a c k 2 ( ⋅ ) \mathsf{Mac}_{k_2}(\cdot) Mack2()攻击 Π M \Pi_M ΠM ) 规约到 A \mathcal{A} A
    • A M \mathcal{A}_M AM A \mathcal{A} A 为子函数来运行。 A \mathcal{A} A 将产生 q ( n ) q(n) q(n)个解密预言机查询, A M \mathcal{A}_M AM 预先从中均匀随机选择一个编号 i ← { 1 , … , q ( n ) } i \gets \{1,\dotsc,q(n)\} i{1,,q(n)},并将该查询作为输出的伪造;
    • A \mathcal{A} A m m m查询加密预言机时, A M \mathcal{A}_M AM 产生加密密钥并以加密预言机的角色先计算密文 c c c,然后用密文查询MAC预言机并将 < c , t > \left<c, t\right> c,t返回给 A \mathcal{A} A
    • A \mathcal{A} A < c , t > \left<c, t\right> c,t查询解密预言机时,如果这是第 i i i 个查询,那么 A M \mathcal{A}_M AM 输出 < c , t > \left<c, t\right> c,t并停止;否则,如果这是曾经在加密预言机查询过的, A M \mathcal{A}_M AM 返回明文,否则,返回 ⊥ \bot (因为只要 V Q \mathsf{VQ} VQ未发生,就应该返回 ⊥ \bot );
    • M a c f o r g e A M , Π M ( n ) = 1 \mathsf{Macforge}_{\mathcal{A}_M,\Pi_M }(n)=1 MacforgeAM,ΠM(n)=1 的条件是,只有当 V Q \mathsf{VQ} VQ 发生并且 A M \mathcal{A}_M AM 正确地猜测了 i i i (概率为 1 / q ( n ) 1/q(n) 1/q(n))。
    • Pr ⁡ [ M a c f o r g e A M , Π M ( n ) = 1 ] ≥ Pr ⁡ [ V Q ] / q ( n ) . \Pr [\mathsf{Macforge}_{\mathcal{A}_M,\Pi_M }(n)=1] \ge \Pr[\mathsf{VQ}]/q(n). Pr[MacforgeAM,ΠM(n)=1]Pr[VQ]/q(n).
  12. 证明在无法利用解密预言机时难以破解加密方案

    • 思路:将 A E \mathcal{A}_E AE (以 E n c k 1 ( ⋅ ) \mathsf{Enc}_{k_1}(\cdot) Enck1() 预言机来攻击 Π E \Pi_E ΠE ) 规约到 A \mathcal{A} A

    • A E \mathcal{A}_E AE A \mathcal{A} A 为子函数来运行。 A E \mathcal{A}_E AE 扮演 A \mathcal{A} A 的加密预言机和解密预言机方法与 A M \mathcal{A}_M AM 的类似;

    • 实验 P r i v K A E , Π E c p a \mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A}_E,\Pi_E} PrivKAE,ΠEcpa 与实验 P r i v K A , Π ′ c c a \mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi'} PrivKA,Πcca 的运行一样, A E \mathcal{A}_E AE 输出与 A \mathcal{A} A 一样的 b ′ b' b

    • Pr ⁡ [ P r i v K A E , Π E c p a ( n ) = 1 ∧ V Q ‾ ] = Pr ⁡ [ P r i v K A , Π ′ c c a ( n ) = 1 ∧ V Q ‾ ] \Pr[\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A}_E,\Pi_E}(n)=1 \land \overline{\mathsf{VQ}}] = \Pr[\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi'}(n)=1 \land \overline{\mathsf{VQ}}] Pr[PrivKAE,ΠEcpa(n)=1VQ]=Pr[PrivKA,Πcca(n)=1VQ]

      Pr ⁡ [ P r i v K A E , Π E c p a ( n ) = 1 ] ≥ Pr ⁡ [ P r i v K A , Π ′ c c a ( n ) = 1 ∧ V Q ‾ ] \Pr [\mathsf{PrivK}^{\mathsf{cpa}}_{\mathcal{A}_E,\Pi_E }(n)=1] \ge \Pr[\mathsf{PrivK}^{\mathsf{cca}}_{\mathcal{A},\Pi'}(n)=1 \land \overline{\mathsf{VQ}}] Pr[PrivKAE,ΠEcpa(n)=1]Pr[PrivKA,Πcca(n)=1VQ]

  13. 认证加密理论与实践

    • 定理: Π E \Pi_E ΠE 是CPA安全的并且 Π M \Pi_M ΠM 是一个带有唯一标签的安全MAC(强安全MAC),那么由先加密后认证得到的 Π ′ \Pi' Π 是安全的。注:强安全MAC是指一个消息只有一个有效标签
    • GCM (Galois/Counter Mode): 先CTR加密,然后做 Galois MAC. (RFC4106/4543/5647/5288 on IPsec/SSH/TLS)
    • EAX: 先CTR 加密,然后 CMAC(Cipher-based MAC)。
    • 定理:先认证后加密方法是安全的,如果 Π E \Pi_E ΠE 是CTR模式或者CBC模式。
    • CCM (Counter with CBC-MAC): 先 CBC-MAC 后 CTR 加密。 (802.11i, RFC3610)
    • OCB (Offset Codebook Mode): 将MAC整合到加密中。 (是CCM, EAX的2倍快)
    • 上述方案都支持 AEAD (A.E. with associated data): 部分是明文并且整个消息被认证。这在实践中是很常用的,例如一个IP报文需要加密,但IP头部需要以明文方式传输。
  14. 安全消息传递补充

    • 认证可能泄漏消息;注:完整性不同于机密性
    • 安全消息传递意味着CCA安全性,但反之未必;
    • 不同安全目标应该采用不同的密钥;否则,可能泄漏消息,例如 M a c k ( c ) = D e c k ( c ) \mathsf{Mac}_k(c)=\mathsf{Dec}_k(c) Mack(c)=Deck(c)
    • 实现可能摧毁理论上的安全性:
      • Padding Oracle 攻击(TLS 1.0): 解密返回两种类型错误: padding error,MAC error;敌手通过猜测来获得最后一字节,如果没有padding错误;参考之前在CCA部分学习的Padding Oracle攻击;
      • 攻击非原子解密(SSH Binary Packet Protocol):解密时,分三步 (1)解密消息长度; (2)读取长度所表明的包数; (3) 检查MAC;敌手针对这种非原子解密过程,实施攻击分三步 (1)发送密文 c c c;(2)发送 l l l 个包直到“MAC error”发生;(3)获得密文对应的明文 l = D e c ( c ) l = \mathsf{Dec}(c) l=Dec(c)
  15. 确定性CPA安全(Deterministic CPA Security

    • 应用:在加密数据库索引后,检索时需要加密明文来检索密文;在磁盘加密中,密文大小需要与明文一样大。但之前学习的CPA安全加密都是非确定性的,而且密文比明文长。
    • 确定性加密(Deterministic encryption):相同的消息在相同密钥下被加密为相同的密文。
      • 问题:这样能实现CPA安全吗?答案是不可能,因为CPA安全意味着非确定性加密,密文长于明文。于是,我们需要新的安全定义。
    • 确定性CPA安全(Deterministic CPA Security): 如果从来不用相同的密钥加密同一个消息两次,实现CPA安全,即密钥和消息对 < k , m > \left<k,m\right> k,m 是唯一的。
      • 这里引入新的条件:消息是可重复的,密钥也可重复,但同一密钥不能重复加密同一消息。这是为了实现CPA而做出的必要改变。相当于获得确定性下CPA安全的同时,丧失同一个消息被同一个密文加密多次的能力。
    • 一个PRP就是固定长度的确定性CPA安全加密方案。
    • 确定性认证加密(Deterministic Authenticated Encryption,DAE):与上面的确定性CPA安全概念类似。
  16. 在变长加密中的一个常见错误

    • 常见错误:在 CBC/CTR 模式中采用固定的 I V IV IV。这虽然是确定性的,但是不安全。
    • 敌手能够查询 ( m q 1 , m q 2 ) (m_{q1}, m_{q2}) (mq1,mq2) 并且得到 ( c q 1 , c q 2 ) (c_{q1}, c_{q2}) (cq1,cq2);然后输出明文: I V ⊕ c q 1 ⊕ m q 2 IV\oplus c_{q1} \oplus m_{q2} IVcq1mq2 并且期待密文: c q 2 c_{q2} cq2。注:第一个PRF的输入就是 I V ⊕ I V ⊕ c q 1 ⊕ m q 2 = c q 1 ⊕ m q 2 IV\oplus IV\oplus c_{q1} \oplus m_{q2} = c_{q1} \oplus m_{q2} IVIVcq1mq2=cq1mq2
    • 下面介绍三种变长明文的CPA安全的确定性加密方案。
  17. 合成初始向量法(Synthetic IV (SIV)

    • 思路:保持初始向量对敌手仍是不可预测的,但是由明文和密钥确定的。
    • 合成初始向量 SIV :对同一对 < k , m > \left<k,m\right> k,m使用一个固定的 I V IV IV ,用明文通过PRF生成SIV,再用另一个密钥加密;
    • 一个PRF F F F,和一个 CPA安全 Π : ( E n c k ( r , m ) , D e c k ( r , s ) ) \Pi:(\mathsf{Enc}_k(r,m), \mathsf{Dec}_k(r,s)) Π:(Enck(r,m),Deck(r,s))
    • 生成两个密钥 ( k 1 , k 2 ) ← G e n (k_1,k_2) \gets \mathsf{Gen} (k1,k2)Gen; 得到合成初始向量 S I V ← F k 1 ( m ) SIV \gets F_{k_1}(m) SIVFk1(m);以SIV做为IV来加密 c = < S I V , E n c k 2 ( S I V , m ) > c = \left<SIV,\mathsf{Enc}_{k_2}(SIV,m) \right> c=SIV,Enck2(SIV,m)
    • 采用SIV-CTR可以实现 DAE:MAC标签 t : = S I V t := SIV t:=SIV ,然后应用 C T R k 2 CTR_{k_2} CTRk2
  18. 宽块PRP(Wide Block PRP

    • 思路:因为一个PRP本身是确定性CPA安全,因此,构造一个大的PRP来加密。
    • 宽块PRP就是PRP,从较短的PRP(例如AES)构造一个更长的块大小,和消息一样大(例如磁盘上一个扇区)。
    • PRP-based DAE: E n c k ( m ∥ 0 ℓ ) \mathsf{Enc}_k(m\| 0^{\ell}) Enck(m0)。在解密中 D e c \mathsf{Dec} Dec,如果后半部分明文 ≠ 0 ℓ \neq 0^{\ell} =0,输出 ⊥ \perp
    • 窄块(Narrow block)可能泄漏信息,由于有一些块相同时,可能泄漏信息。
    • 标准: IEEE P1619.2 中 CBC-mask-CBC (CMC) 和 ECB-mask-ECB (EME) 。
    • 代价:由于两轮加密比SIV方法慢两倍。
  19. 可调加密(Tweakable Encryption

    • 思路:从密钥生成不同的密钥,一次一密
    • 无扩展加密(Encryption without expansion): 明文空间与密文空间相同 M = C \mathcal{M} = \mathcal{C} M=C 意味着没有完整性保护的确定性加密,例如磁盘加密。
    • Tweak是一个类似初始向量的值,在同一密钥下,不同的tweak构造不同的PRP。每一个块采用不同的tweak。
    • 可调块密码(Tweakable block ciphers):用一个密钥生成许多PRP K × T × X → X \mathcal{K} \times \mathcal{T} \times \mathcal{X} \to \mathcal{X} K×T×XX, T \mathcal{T} T 是tweak集合。
    • 一种简单的解决方法:以一个Tweak t t t来生成密钥 k t = F k ( t ) , t = 1 , … , ℓ k_t = F_k(t), t=1,\dots,\ell kt=Fk(t),t=1,,,但要加密两次效率不高,需要更有效的方法。
  20. XTS

    • XTS:XEX(Xor-Encrypt-Xor)-based tweaked-codebook mode with ciphertext stealing。 (XTS-AES, NIST SP 800-38E)
    • XEX: c = F k ( m ⊕ x ) ⊕ x c = F_k(m\oplus x)\oplus x c=Fk(mx)x,其中在 Galois 域上 x = F k ( I ) ⊗ 2 j x=F_k(I)\otimes 2^j x=Fk(I)2j ,在扇区 I I I中块 j j j 对应的tweak是 ( I , j ) (I,j) (I,j)
    • Ciphertext stealing (CTS):无需填充(padding),没有扩展。
  21. 密钥派生函数(Key Derivation Function (KDF)

    • 密钥派生函数(Key Derivation Function,KDF):从一个秘密的原密钥 s k sk sk 产生许多密钥;
    • 对于均匀随机的 s k sk sk F F F 是 PRF, c t x ctx ctx 是标识应用的唯一串, K D F ( s k , c t x , l ) = < F s k ( c t x ∥ 0 ) , F s k ( c t x ∥ 1 ) ⋯   , F s k ( c t x ∥ l ) > . \mathsf{KDF}(sk,ctx,l) = \left<F_{sk}(ctx\|0),F_{sk}(ctx\|1)\cdots,F_{sk}(ctx\|l)\right>. KDF(sk,ctx,l)=Fsk(ctx0),Fsk(ctx1),Fsk(ctxl).
    • 对于非均匀随机的 s k sk sk:提取并扩展范式
      • 提取(extract): HKDF k ← H M A C ( s a l t , s k ) k \gets \mathsf{HMAC}(salt,sk) kHMAC(salt,sk) s a l t salt salt(盐)是一个随机数。用盐来向密钥添加熵。
      • 扩展(expand):与上面均匀随机情况一样。
  22. 基于口令的KDF(Password-Based KDF, PBKDF

    • 密钥延展(Key stretching)增加测试密钥的时间 (使用较慢的哈希函数)。
    • 密钥加强(Key strengthening)增加密钥的长度和随机性 (使用盐)。
    • PKCS#5 (PBKDF1): H ( c ) ( p w d ∥ s a l t ) H^{(c)}(pwd\|salt) H(c)(pwdsalt), 哈希函数迭代 c c c 次。
    • 敌手攻击,或者尝试被加强的密钥 (更大的密钥空间),或者尝试初始密钥 (每个密钥花费更长时间)。
  23. IV,Nonce,Counter,Tweak和Salt

    • IV:密码学原语的输入,提供随机性。
    • nonce:用来标记一次通信的只使用一次的一个数。
    • counter:一个连续的数,用作nonce或IV。
    • tweak:在一个密码中对每个块只用一次的输入。
    • salt:随机比特,用于创建一个函数的输入。
  24. 总结文章来源地址https://www.toymoban.com/news/detail-796311.html

到了这里,关于【现代密码学】笔记 补充7-- CCA安全与认证加密《introduction to modern cryphtography》的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 【现代密码学基础】详解完美安全与不可区分安全

    【现代密码学基础】详解完美安全与不可区分安全

    目录 一. 介绍 二. 不可区分性试验 三. 不可区分性与完美安全 四. 例题 五. 小结 敌手完美不可区分,英文写做perfect adversarial indistinguishability,其中adversarial经常被省略不写,在密码学的论文中经常被简称为IND安全。 完美不可区分与香农的完美安全是类似的。该定义来源于一

    2024年01月21日
    浏览(14)
  • 《现代密码学》学习笔记——第三章 分组密码 [二] AES

    《现代密码学》学习笔记——第三章 分组密码 [二] AES

    版本 密钥长度 分组长度 迭代轮数 AES-128 4 4 10 AES-192 6 4 12 AES-256 8 4 14 (1)字节代换(SubByte) (2)行移位(ShiftRow) (3)列混合(MixColumn) (4)密钥加(AddRoundKey) 1.字节代换   字节代换是非线性变换,独立地对状态的每个字节进行。代换表(S-Box)是可逆的。   将

    2024年02月05日
    浏览(15)
  • Introduction to modern Cryptography 现代密码学原理与协议第二章笔记

    Introduction to modern Cryptography 现代密码学原理与协议第二章笔记

    M表示明文空间,K表示密钥空间,C表示所有可能的密文集合 完善保密加密 的概念: 简化约定,不再特殊声明 ,除数为0无意义 完全保密加密的等价公式: 证明: 必要性证明略,此证明为条件概率的简单应用 完全不可区分性 : 完善保密加密的另一形式:  证明:   敌手不可区分性

    2024年02月03日
    浏览(14)
  • 【现代密码学】笔记6--伪随机对象的理论构造《introduction to modern cryphtography》

    【现代密码学】笔记6--伪随机对象的理论构造《introduction to modern cryphtography》

    主要在 哈工大密码学课程 张宇老师课件 的基础上学习记录笔记。 内容补充:骆婷老师的PPT 《introduction to modern cryphtography》–Jonathan Katz, Yehuda Lindell(现代密码学——原理与协议)中相关章节 密码学复习笔记 这个博主好有意思 初步笔记,如有错误请指正 快速补充一些密码

    2024年01月16日
    浏览(52)
  • 【现代密码学】笔记3.1-3.3 --规约证明、伪随机性《introduction to modern cryphtography》

    【现代密码学】笔记3.1-3.3 --规约证明、伪随机性《introduction to modern cryphtography》

    主要在 哈工大密码学课程 张宇老师课件 的基础上学习记录笔记。 内容补充:骆婷老师的PPT 《introduction to modern cryphtography》–Jonathan Katz, Yehuda Lindell(现代密码学——原理与协议)中相关章节 密码学复习笔记 这个博主好有意思 B站视频 密码学原理《Introduction to modern Cryptog

    2024年01月20日
    浏览(11)
  • 现代密码学基础(2)

    现代密码学基础(2)

    目录 一. 介绍 二. 举例:移位密码 (1)密文概率 (2)明文概率 三. 举例:多字母的移位密码 四. 完美安全 五. 举例:双子母的移位密码 六. 从密文角度看完美安全 七. 完美保密性质 在密码学中,K代表密钥,M代表明文,C代表密文,每个都有各自的概率分布。 密钥是通过密

    2024年01月17日
    浏览(11)
  • 现代密码学复习

    现代密码学复习

    目录 密码学总结 第一章——只因础模型与概念 1.1 密码学五元组(结合🐏皮卷) 1.2 Dolev-Yao威胁模型 1.3 攻击类型 1.4 柯克霍夫原则(Kerckhoffs\\\'s principle) 1.5 对称、非对称加密 1.6 密码的目标 1.7 保密通信模型 第二章——古典密码 2.1 仿射密码 2.2 Hill密码 例题0 ——解同余方程

    2023年04月09日
    浏览(10)
  • 现代密码学实验五:签名算法

    现代密码学实验五:签名算法

    一、实验目的 1.掌握数字签名的基本原理,理解RSA算法如何提供数字签名。 2.熟悉实验环境和加密软件CrypTool 1.4(CrypTool 2)的使用。 3.编写代码实现签名算法。 二、实验内容 运行CrypTool 1.4(CrypTool 2),使用 RSA 算法对消息进行签名操作,选择公钥PK=(e,N),私钥为sk=(d,N)。例如: 消息

    2024年02月02日
    浏览(48)
  • 第四章 公钥密码 —— 现代密码学(杨波)课后题答案解析

    4. 用推广的Euclid算法求67 mod 119的逆元 解:初始化:(1,0,119), (0,1,67) 1:Q=119/67=1,(0,1,67) , (1,-1,52) 2:Q=67/52=1,(1,-1,52), (-1,2,15) 3:Q=52/15=3,(-1,2,15), (4,-7,7) 4:Q=15/7=2,(4,-7,7), (-9,16,1) 所以67 -1  mod 119=16 10.设通信双方使用RSA加密体制,接收方的公开钥是( e , n )=(5,35),接收到

    2024年02月05日
    浏览(14)
  • 第二章 流密码 —— 现代密码学(杨波)课后题答案解析

    1.3级线性反馈移位寄存器在 c 3 =1时可有4种线性反馈函数,设其初始状态为( a 1 , a 2 , a 3 )=(1,0,1),求各线性反馈函数的输出序列及周期。 解:此时线性反馈函数可表示为 f ( a 1 , a 2 , a 3 )= a 1 Å c 2 a 2 Å c 1 a 3 当 c 1 =0, c 2 =0时, f ( a 1 , a 2 , a 3 )= a 1 Å c 2 a 2 Å c 1 a 3 =

    2024年02月05日
    浏览(15)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包