Kubernetes核心指标监控——Metrics Server详解

这篇具有很好参考价值的文章主要介绍了Kubernetes核心指标监控——Metrics Server详解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1、概述

从Kubernetes v1.8 开始,资源使用情况的监控可以通过 Metrics API的形式获取,例如容器CPU和内存使用率。这些度量可以由用户直接访问(例如,通过使用kubectl top命令),或者由集群中的控制器(例如,Horizontal Pod Autoscaler)使用来进行决策,具体的组件为Metrics Server,用来替换之前的heapster,heapster从1.11开始逐渐被废弃。

Metrics-Server是集群核心监控数据的聚合器。通俗地说,它存储了集群中各节点的监控数据,并且提供了API以供分析和使用。Metrics-Server作为一个 Deployment对象默认部署在Kubernetes集群中。不过准确地说,它是Deployment,Service,ClusterRole,ClusterRoleBinding,APIService,RoleBinding等资源对象的综合体。

项目地址:https://github.com/kubernetes-sigs/metrics-server ,目前稳定版本是v0.6.2。

metrics-server,k8s,Prometheus,kubernetes,docker,容器

metric-server主要用来通过aggregate api向其它组件(kube-scheduler、HorizontalPodAutoscaler、Kubernetes集群客户端等)提供集群中的pod和node的cpu和memory的监控指标,弹性伸缩中的podautoscaler就是通过调用这个接口来查看pod的当前资源使用量来进行pod的扩缩容的。

需要注意的是:

  • metric-server提供的是实时的指标(实际是最近一次采集的数据,保存在内存中),并没有数据库来存储
  • 这些数据指标并非由metric-server本身采集,而是由每个节点上的cadvisor采集,metric-server只是发请求给cadvisor并将metric格式的数据转换成aggregate api
  • 由于需要通过aggregate api来提供接口,需要集群中的kube-apiserver开启该功能(开启方法可以参考官方社区的文档)

2、部署Metrics Server

2.1 下载并部署Metrics Server

下载部署清单:

wget https://github.com/kubernetes-sigs/metrics-server/releases/download/v0.6.2/components.yaml

修改部署清单内容:

apiVersion: v1
kind: ServiceAccount
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  labels:
    k8s-app: metrics-server
    rbac.authorization.k8s.io/aggregate-to-admin: "true"
    rbac.authorization.k8s.io/aggregate-to-edit: "true"
    rbac.authorization.k8s.io/aggregate-to-view: "true"
  name: system:aggregated-metrics-reader
rules:
- apiGroups:
  - metrics.k8s.io
  resources:
  - pods
  - nodes
  verbs:
  - get
  - list
  - watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  labels:
    k8s-app: metrics-server
  name: system:metrics-server
rules:
- apiGroups:
  - ""
  resources:
  - nodes/metrics
  verbs:
  - get
- apiGroups:
  - ""
  resources:
  - pods
  - nodes
  verbs:
  - get
  - list
  - watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server-auth-reader
  namespace: kube-system
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: Role
  name: extension-apiserver-authentication-reader
subjects:
- kind: ServiceAccount
  name: metrics-server
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server:system:auth-delegator
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: system:auth-delegator
subjects:
- kind: ServiceAccount
  name: metrics-server
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  labels:
    k8s-app: metrics-server
  name: system:metrics-server
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: system:metrics-server
subjects:
- kind: ServiceAccount
  name: metrics-server
  namespace: kube-system
---
apiVersion: v1
kind: Service
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server
  namespace: kube-system
spec:
  ports:
  - name: https
    port: 443
    protocol: TCP
    targetPort: https
  selector:
    k8s-app: metrics-server
---
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    k8s-app: metrics-server
  name: metrics-server
  namespace: kube-system
spec:
  selector:
    matchLabels:
      k8s-app: metrics-server
  strategy:
    rollingUpdate:
      maxUnavailable: 0
  template:
    metadata:
      labels:
        k8s-app: metrics-server
    spec:
      containers:
      - args:
        - --cert-dir=/tmp
        - --secure-port=4443
        - --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname
        - --kubelet-use-node-status-port
        - --metric-resolution=15s
        - --kubelet-insecure-tls
        image: k8s.gcr.io/metrics-server/metrics-server:v0.6.2
        imagePullPolicy: IfNotPresent
        livenessProbe:
          failureThreshold: 3
          httpGet:
            path: /livez
            port: https
            scheme: HTTPS
          periodSeconds: 10
        name: metrics-server
        ports:
        - containerPort: 4443
          name: https
          protocol: TCP
        readinessProbe:
          failureThreshold: 3
          httpGet:
            path: /readyz
            port: https
            scheme: HTTPS
          initialDelaySeconds: 20
          periodSeconds: 10
        resources:
          requests:
            cpu: 100m
            memory: 200Mi
        securityContext:
          allowPrivilegeEscalation: false
          readOnlyRootFilesystem: true
          runAsNonRoot: true
          runAsUser: 1000
        volumeMounts:
        - mountPath: /tmp
          name: tmp-dir
      nodeSelector:
        kubernetes.io/os: linux
      priorityClassName: system-cluster-critical
      serviceAccountName: metrics-server
      volumes:
      - emptyDir: {}
        name: tmp-dir
---
apiVersion: apiregistration.k8s.io/v1
kind: APIService
metadata:
  labels:
    k8s-app: metrics-server
  name: v1beta1.metrics.k8s.io
spec:
  group: metrics.k8s.io
  groupPriorityMinimum: 100
  insecureSkipTLSVerify: true
  service:
    name: metrics-server
    namespace: kube-system
  version: v1beta1
  versionPriority: 100

在deploy中,spec.template.containers.args字段中加上--kubelet-insecure-tls选项,表示不验证客户端证书;上述清单主要用deploy控制器将metrics server运行为一个pod,然后授权metrics-server用户能够对pod/node资源进行只读权限;然后把metrics.k8s.io/v1beta1注册到原生apiserver上,让其客户端访问metrics.k8s.io下的资源能够被路由至metrics-server这个服务上进行响应;

镜像被墙怎么办?

修改镜像 k8s.gcr.io/metrics-server/metrics-server:v0.6.2 -> admin4j/metrics-server:v0.6.2

或者参考 k8s镜像下载不下来?利用 github Action 自己动手一次性解决难题,丰衣足食

应用资源清单:

[root@master1 metrics-server]# kubectl apply -f components.yaml
serviceaccount/metrics-server created
clusterrole.rbac.authorization.k8s.io/system:aggregated-metrics-reader created
clusterrole.rbac.authorization.k8s.io/system:metrics-server created
rolebinding.rbac.authorization.k8s.io/metrics-server-auth-reader created
clusterrolebinding.rbac.authorization.k8s.io/metrics-server:system:auth-delegator created
clusterrolebinding.rbac.authorization.k8s.io/system:metrics-server created
service/metrics-server created
deployment.apps/metrics-server created
apiservice.apiregistration.k8s.io/v1beta1.metrics.k8s.io created

2.2 验证Metrics Server组件部署成功

(1)查看原生apiserver是否有metrics.k8s.io/v1beta1

[root@master1 metrics-server]# kubectl api-versions|grep metrics
metrics.k8s.io/v1beta1

可以看到metrics.k8s.io/v1beta1群组已经注册到原生apiserver上。

(2)查看metrics server pod是否运行正常

[root@master1 ~]# kubectl get pods -n=kube-system |grep metrics
metrics-server-855cc6b9d-g6xsf  1/1   Running  0     18h

可以看到对应pod已经正常运行,接着查看pod日志,只要metrics server pod没有出现错误日志,或者无法注册等信息,就表示pod里的容器运行正常。

(3)使用kubectl top 命令查看pod的cpu ,内存占比,看看对应命令是否可以正常执行,如果Metrics Server服务有异常的话会报Error from server (ServiceUnavailable): the server is currently unable to handle the request (get nodes.metrics.k8s.io)错误。

[root@master1 ~]# kubectl top nodes
NAME      CPU(cores)   CPU%   MEMORY(bytes)   MEMORY%  
master1   272m         3%     4272Mi          29%      
node1     384m         5%     9265Mi          30%      
node2     421m         5%     14476Mi         48%  

可以看到kubectl top命令可以正常执行,说明metrics server 部署成功没有问题。

3、原理

Metrics server定时从Kubelet的Summary API(类似/ap1/v1/nodes/nodename/stats/summary)采集指标信息,这些聚合过的数据将存储在内存中,且以metric-api的形式暴露出去。

Metrics server复用了api-server的库来实现自己的功能,比如鉴权、版本等,为了实现将数据存放在内存中吗,去掉了默认的etcd存储,引入了内存存储(即实现Storage interface)。

因为存放在内存中,因此监控数据是没有持久化的,可以通过第三方存储来拓展。

来看下Metrics-Server的架构:

metrics-server,k8s,Prometheus,kubernetes,docker,容器

从 Kubelet、cAdvisor 等获取度量数据,再由metrics-server提供给 Dashboard、HPA 控制器等使用。本质上metrics-server相当于做了一次数据的转换,把cadvisor格式的数据转换成了kubernetes的apijson格式。由此我们不难猜测,metrics-server的代码中必然存在这种先从metric中获取接口中的所有信息,再解析出其中的数据的过程。我们给metric-server发送请求时,metrics-server中已经定期从中cadvisor获取好数据了,当请求发过来时直接返回缓存中的数据。

4、如何获取监控数据

Metrics-Server通过kubelet获取监控数据。

在1.7版本之前,k8s在每个节点都安装了一个叫做cAdvisor的程序,负责获取节点和容器的CPU,内存等数据;而在1.7版本及之后,k8s将cAdvisor精简化内置于kubelet中,因此可直接从kubelet中获取数据。

5、如何提供监控数据

metrics-server,k8s,Prometheus,kubernetes,docker,容器

Metrics-Server通过metrics API提供监控数据。

先说下API聚合机制,API聚合机制是kubernetes 1.7版本引入的特性,能将用户扩展的API注册至API Server上。

API Server在此之前只提供kubernetes资源对象的API,包括资源对象的增删查改功能。有了API聚合机制之后,用户可以发布自己的API,而Metrics-Server用到的metrics APIcustom metrics API均属于API聚合机制的应用。

用户可通过配置APIService资源对象以使用API聚合机制,如下是metrics API的配置文件:

apiVersion: apiregistration.k8s.io/v1beta1
kind: APIService
metadata:
  name: v1beta1.metrics.k8s.io
spec:
  service:
    name: metrics-server
    namespace: kube-system
  group: metrics.k8s.io
  version: v1beta1
  insecureSkipTLSVerify: true
  groupPriorityMinimum: 100
  versionPriority: 100

如上,APIService提供了一个名为v1beta1.metrics.k8s.io的API,并绑定至一个名为metrics-server的Service资源对象。

可以通过kubectl get apiservices命令查询集群中的APIService。

因此,访问Metrics-Server的方式如下:

/apis/metrics.k8s.io/v1beta1  --->   metrics-server.kube-system.svc  --->   x.x.x.x
 
+---------+       +-----------+                   +------------------------+        +-----------------------------+
| 发起请求 +----->+ API Server +----------------->+ Service:metrics-server +-------->+ Pod:metrics-server-xxx-xxx |

有了访问Metrics-Server的方式,HPA,kubectl top等对象就可以正常工作了。

6、总结

kubernetes的新监控体系中,metrics-server属于Core metrics(核心指标),提供API metrics.k8s.io,仅提供Node和Pod的CPU和内存使用情况。而其他Custom Metrics(自定义指标)由Prometheus等组件来完成,后续文章将对自定义指标进行解析。

参考:https://staight.github.io/2019/09/12/metrics-server%E6%B5%85%E8%B0%88/

参考:http://yost.top/2020/05/17/about-metric-server/

参考:https://yasongxu.gitbook.io/container-monitor/yi-.-kai-yuan-fang-an/di-1-zhang-cai-ji/metrics-server文章来源地址https://www.toymoban.com/news/detail-802067.html

到了这里,关于Kubernetes核心指标监控——Metrics Server详解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 【k8s、云原生】基于metrics-server弹性伸缩

    【k8s、云原生】基于metrics-server弹性伸缩

    第四阶段 时  间:2023年8月18日 参加人:全班人员 内  容: 基于metrics-server弹性伸缩 目录 一、Kubernetes部署方式 (一)minikube (二)二进制包 (三)Kubeadm 二、基于kubeadm部署K8S集群 (一)环境准备 (二)部署kubernetes集群 (三)安装Dashboard UI (四)metrics-server服务部署 (

    2024年02月12日
    浏览(11)
  • K8S--安装metrics-server,解决error: Metrics API not available问题

    K8S--安装metrics-server,解决error: Metrics API not available问题

    原文网址:K8S--安装metrics-server,解决error: Metrics API not available问题-CSDN博客 本文介绍K8S通过安装metrics-server来解决error: Metrics API not available问题的方法。 Metrics Server采用了Kubernetes Metrics API的标准,它使用HTTP接口来暴露度量指标数据,通过轮询来收集这些数据,然后将其存储在

    2024年02月22日
    浏览(16)
  • Kubernetes 笔记(17)— 系统监控、使用Metrics Server、hpa 自动伸缩 Pod 数量、Prometheus 的使用

    Kubernetes 笔记(17)— 系统监控、使用Metrics Server、hpa 自动伸缩 Pod 数量、Prometheus 的使用

    如果你对 Linux 系统有所了解的话,也许知道有一个命令 top 能够实时显示当前系统的 CPU 和内存利用率,它是性能分析和调优的基本工具,非常有用。 Kubernetes 也提供了类似的命令,就是 kubectl top ,不过默认情况下这个命令不会生效,必须要安装一个插件 Metrics Server 才可以。

    2024年02月01日
    浏览(12)
  • k8s笔记24--安装metrics-server及错误处理

    最近一个同事在老版本的 k8s 上安装metrics-server,pod一直处于running 非就绪状态,经过查看发现存在 tls 、软件版本、 资源权限等问题。记录在此处,以便于后续查阅、同类问题续更。 参考官方文档 kubernetes-sigs/metrics-server 执行如下命令即可 注意事项: 如果需要忽略 Kubelet c

    2024年02月11日
    浏览(12)
  • k8s(1.28)使用Helm安装metrics-server

    提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 提示:这里可以添加本文要记录的大概内容: metrics-server安装后,可以查看集群的node和pod的CPU和Memory占用情况,非常有用。 提示:以下是本篇文章正文内容,下面案例可供参考 官网地址:https://github

    2024年02月19日
    浏览(27)
  • k8s中top指令使用前提:正确安装metrics-server

    k8s中top指令使用前提:正确安装metrics-server

     参考引用项目:https://www.cnblogs.com/lfl17718347843/p/14283796.html      Kubernetes Metrics Server 是 Cluster 的核心监控数据的聚合器,kubeadm 默认是不部署的。        确认metrics-server能否被使用的三个前提(验证以及修改方法https://cnblogs.com/lfl17718347843/p/14283796.html): 安装地址: 修改

    2024年01月16日
    浏览(14)
  • 24-k8s的附件组件-Metrics-server组件与hpa资源pod水平伸缩

    24-k8s的附件组件-Metrics-server组件与hpa资源pod水平伸缩

            Metrics-Server组件目的:获取集群中pod、节点等负载信息;         hpa资源目的:通过metrics-server获取的pod负载信息,自动伸缩创建pod; 参考链接: 资源指标管道 | Kubernetes https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/metrics-server GitHub - kubernetes-sigs/metrics-server:

    2024年02月21日
    浏览(15)
  • kube-state-metrics暴露k8s中的监控指标

    kube-state-metrics 是一个用于从 Kubernetes 集群中生成各种资源对象状态指标的工具。 通过Deployment等配置完成安装 https://github.com/kubernetes/kube-state-metrics/tree/main/examples/standard 根据官方给定的配置添加至k8s上 注意需要RBAC授权 启动项 要使 kube-state-metrics 暴露更多的节点和 Pod 指标,可

    2024年02月14日
    浏览(14)
  • jmeter压测学习-监听器之服务器性能指标监控(PerfMon Metrics Collector)

    jmeter压测学习-监听器之服务器性能指标监控(PerfMon Metrics Collector)

    1.官网下载插件的jar包 Plugins Manager下载地址:Install :: JMeter-Plugins.org 2. 将下载的jar包复制到 %JMETER_HOME%libext 目录下 3. 启动 JMeter -- Options -- Plugins Manager 。(如果没将jar包放在ext目录下是没有该选项的) 4. Custom Thread Groups 插件 Custom Thread Groups插件包含Stepping Thread Group、Ultimate

    2024年04月15日
    浏览(11)
  • K8S系统监控:使用Metrics Server和Prometheus

    K8S系统监控:使用Metrics Server和Prometheus

    Kubernetes 也提供了类似的linux top的命令,就是 kubectl top,不过默认情况下这个命令不会生效,必须要安装一个插件 Metrics Server 才可以。 Metrics Server 是一个专门用来收集 Kubernetes 核心资源指标(metrics)的工具,它定时从所有节点的 kubelet 里采集信息,但是对集群的整体性能影

    2024年02月16日
    浏览(32)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包