【论文阅读】Self-supervised Learning: Generative or Contrastive

这篇具有很好参考价值的文章主要介绍了【论文阅读】Self-supervised Learning: Generative or Contrastive。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Abstract

研究了在计算机视觉、自然语言处理和图形学习中用于表示的新的自监督学习方法。全面回顾了现有的实证方法,并根据其目的将其归纳为三大类:生成性、对比性和生成性对比(对抗性)。进一步收集了关于自我监督学习的相关理论分析,以对自我监督学习为什么有效提供更深入的思考。最后,简要讨论了自我监督学习的开放问题和未来方向。

Introduction

【论文阅读】Self-supervised Learning: Generative or Contrastive,论文阅读
自监督学习可以看作无监督学习的一个分支,因为不涉及手工label,狭义地说,无监督学习专注于检测特定的数据模式,如聚类、社区发现或异常检测,而自监督学习旨在恢复,这仍然处于监督环境的范式中。
有监督学习是数据驱动型的,严重依赖昂贵的手工标记、虚假相关性和对抗性攻击。我们希望神经网络能用更少的标签、更少的样本和更少的试验来学习更多。自注意力话大量的注意力在数据有效性和生成能力。在2020年AAAI的受邀演讲中,图灵奖得主Yann LeCun将自我监督学习描述为“机器为任何观察到的部分预测其输入的任何部分”。
自监督学习的特征可以概括为:

  1. 通过使用半自动的过程从数据本身获得label
  2. 从数据的其他部分预测这一部分

【论文阅读】Self-supervised Learning: Generative or Contrastive,论文阅读

上图是这个综述文章的分类,生成性、对比性和生成性对比(对抗性);以及每一个类别下的典型的方法。

自监督学习的动机

为了解决基本的OOD(泛化能力差,简单的多层感知器泛化能力非常差(总是假设分布外(OOD)样本呈线性关系))和生成的问题。
自我监督学习的成功最关键的一点是,它找到了一种方法来利用大数据时代可用的大量未标记数据。
自监督学习可以分为三大类:

  1. 生成式:训练一个encoder去编码输入x到明确的向量z,和一个解码器去从z重建x。(eg:the cloze test, graph generation)
  2. 对比式:训练一个encoder去编码输入到一个明确的向量z,去衡量相似性。(eg:mutual information maximizetion.instance discrimination)
  3. 生成对比式(对抗式):训练一个encoder-decoder去省城fakesamples 和一个鉴别器去区分真实样本和生成样本。(eg:GAN)

【论文阅读】Self-supervised Learning: Generative or Contrastive,论文阅读
这三个类别不同在于架构和目标函数的不同。
不同点:

  1. 对于潜在分布z,在声称是和对比式方法中,z是明确的经常被应用于下游任务,而GAN中,z是隐式建模的。
  2. 对于鉴别器。这个生成的方式没有鉴别器,然而GAN和对比网络有。对比式的网络相对来说鉴别器有更少的参数。 (e.g., a multi-layer perceptron with 2-3 layers) than GAN (e.g., a standard ResNet [53])
    一张自监督学习综述的图
    【论文阅读】Self-supervised Learning: Generative or Contrastive,论文阅读

生成式的自监督学习

AR

在计算机视觉中,PixelRNN和PixelCNN,总体思路是利用自回归访华逐像素的对图像进行建模。对于2D图像,自回归模型只能更具特定方向来分解改了,所以在CNN架构中采用了掩模滤波器。基于PixelCNN, WaveNet[130]——一种原始音频生成模型被提出。为了处理长期的时间依赖性,作者开发了扩展的因果卷积来改善接受野。此外,门控残差块和跳过连接被用来增强更好的表达能力。
自回归模型的优点是可以很好地对上下文依赖性进行建模。然而,AR模型的一个缺点是,每个位置的令牌只能从一个方向访问其上下文。

Flow-based Model

基于流的模型的目标是从数据中估计复杂的高维密度函数p(x)。

AE

灵活。AE由一个编码器网络h = f e n c ( x ) f_{enc}(x) fenc(x)和一个解码器网络x’ = f d e c ( x ) f_{dec}(x) fdec(x)(h)组成。AE的目标是使x和x’尽可能相似(如通过均方误差)。可以证明线性自编码器与PCA方法相对应。
除了基础的AE,还有CPM,Denoising AE Model,Variational AE Model。
【论文阅读】Self-supervised Learning: Generative or Contrastive,论文阅读
VQ-VAE的体系结构。与VAE相比,原始的隐藏分布被量化的矢量字典所取代。此外,先前的分布被预先训练的PixelCNN取代,该PixelCNN对图像的分层特征进行建模。

Hybird Fenerative Models

包括结合AR和AE的模型、结合AE和Flow-based Model。

Pros and Cons

优点:不假设下游任务的情况下,重建原始图像分布的能力。现有的生成任务严重依赖生成式自监督学习。
缺点

  1. 生成子监督学习在一些分类情境下,相比于对比学习有很少的竞争力。因为对比学习的目标函数天然地符合分类学习的目标。
  2. 生成式模型逐点的特性使它有一些内在的缺点:敏感性和保守性分布,低级抽象的目标不适合一高级抽象目标的分类任务。
    作为一种相反的方法,生成对比式自我监督学习放弃了逐点目标。它转向更健壮的分布式匹配目标,并更好地处理数据流形中的高级抽象挑战。

对比自监督学习

分为两类:上下文-实例对比、实例-实例对比。

上下文-实例对比

注重于对局部特征和全局上下文语义的对比。
例如:Predict Relative Position
注重于学习局部部分之间的相对位置。全局的上下位作为一个隐式的需求。
【论文阅读】Self-supervised Learning: Generative or Contrastive,论文阅读
Maximize Mutual Information
MI专注于学习局部部分和全局乡下问之间的直接的归属关系,局部位置之间的关系被忽略了。
【论文阅读】Self-supervised Learning: Generative or Contrastive,论文阅读

实例-实例之间的对比

度量学习的一个重要重点是在提高负采样效率的同时执行硬正采样。它们可能在基于MI的模型的成功中发挥着更关键的作用。
作为替代,实例-实例对比学习抛弃了MI,直接研究不同样本的实例级局部表示之间的关系。对于广泛的分类任务,实例级表示比上下文级表示更为重要。

例如:Cluster Discrimination
Instance Discrimination(实例判别)
【论文阅读】Self-supervised Learning: Generative or Contrastive,论文阅读
第一种是端到端的范式,有两个编码器,两个编码器都进行梯度更新,依赖于大的batchsize提供更多的负样本。第二个是有memory bank的方式,有一个编码器,只对这一个编码器进行梯度更新,负样本从memory bank中提取,每次都更新memory bank中随机位置的特征,特征一致性不好,每一个batchsize,模型都会更新,但是memory bank只更新一部分。正样本和负样本进行对比的时候,正样本是当前的encoder产生的,负样本不知道是什么时候的encoder产生的。第三个Moco使用动量编码器,在第一个基础上把右边的编码器改成动量编码器,并且采用队列形式的字典。把对比学习当作动态的字典查询问题。

【论文阅读】Self-supervised Learning: Generative or Contrastive,论文阅读
SIMLR采用了多种数据增强和一个proj在最后加一个非线性层,获得了比Moco高的效果。
【论文阅读】Self-supervised Learning: Generative or Contrastive,论文阅读

BYOL不用负样本,获得了很好的效果。

半监督自我训练的自我监督对比预训练

Chen等人[20]的SimCLR v2支持了上述结论,表明只有10%的原始ImageNet标签,通过联合预训练和自我训练,ResNet-50可以超过监督的。他们提出了一个三步框架:

  1. 像SimCLR v1一样进行自我监督的预训练,并进行一些小的架构修改和更深的ResNet.
  2. 仅使用1%或10%的原始ImageNet标签微调最后几层。
  3. 使用微调后的网络作为教师模型,在未标记的数据上产生标签,以训练较小的学生ResNet-50。知识蒸馏

优点和缺点

优点:对比学习没有解码器,因此对比学习是轻量级的,在下游鉴别任务中表现很好。
存在的问题

  1. 对比学习在NLP领域没有取得令人信服的结果。现在大多数在BERT上进行微调。。很少有算法被提出在预训练阶段应用对比学习。由于大多数语言理解任务都是分类的,因此对比语言预训练方法应该比目前的生成语言模型更好。
  2. 采样有效性。负抽样对于大多数对比学习是必须的,但这个过程通常是棘手的,有偏见的,耗时的。不清楚负样本在对比学习中的作用。
  3. 数据增强,数据增强能提高对比学习的性能。但它为什么以及如何起作用的理论仍然相当模糊。这阻碍了它在其他领域的应用,比如NLP和图学习,这些领域的数据是离散和抽象的。

生成对比学习

总之,对抗性方法吸收了生成法和对比法的优点,同时也存在一些缺点。在我们需要适应隐式分布的情况下,这是一个更好的选择。

使用完整输入

通过部分输入恢复

图像着色、图像修复、超分辨率

预训练语言模型

图学习

领域适应和多模态表示

优点和缺点

优点:生成-对比(对抗性)自监督学习在图像生成、转换和处理方面特别成功
缺点文章来源地址https://www.toymoban.com/news/detail-802327.html

  1. 在NLP和图领域应用受限。
  2. 容易坍塌
  3. 不是用于特征提取

到了这里,关于【论文阅读】Self-supervised Learning: Generative or Contrastive的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 论文阅读:SERE: Exploring Feature Self-relation for Self-supervised Transformer

    Self-supervised 学习目的是在无人工标注的情况下通过自定制的任务(hand-crafted pretext tasks)学习丰富的表示。 使用 自监督学习 为卷积网络(CNN)学习表示已经被验证对视觉任务有效。作为CNN的一种替代方案, 视觉变换器 (ViT)具有强大的表示能力,具有 空间自注意力和通道

    2024年02月09日
    浏览(13)
  • 【论文阅读】Self-supervised Image-specific Prototype Exploration for WSSS

    一篇CVPR2022上的论文,用于弱监督分割 Self-supervised Image-specific Prototype Exploration for Weakly Supervised Semantic Segmentation https://github.com/chenqi1126/SIPE https://openaccess.thecvf.com/content/CVPR2022/papers/Chen_Self-Supervised_Image-Specific_Prototype_Exploration_for_Weakly_Supervised_Semantic_Segmentation_CVPR_2022_paper.pdf 现

    2024年02月11日
    浏览(12)
  • MaskVO: Self-Supervised Visual Odometry with a Learnable Dynamic Mask 论文阅读

    题目 :MaskVO: Self-Supervised Visual Odometry with a Learnable Dynamic Mask 作者 :Weihao Xuan, Ruijie Ren, Siyuan Wu, Changhao Chen 时间 :2022 来源 : IEEE/SICE International Symposium on System Integration (SII) 深度学习的最新进展使移动机器人能够以自我监督的方式联合学习自我运动和深度图。 然而,现有的方

    2024年02月09日
    浏览(11)
  • 论文阅读:Image-to-Lidar Self-Supervised Distillation for Autonomous Driving Data

    目录 摘要 Motivation 整体架构流程 技术细节 雷达和图像数据的同步 小结 论文地址:  [2203.16258] Image-to-Lidar Self-Supervised Distillation for Autonomous Driving Data (arxiv.org) 论文代码: GitHub - valeoai/SLidR: Official PyTorch implementation of \\\"Image-to-Lidar Self-Supervised Distillation for Autonomous Driving Data\\\"    

    2024年02月08日
    浏览(14)
  • 【论文阅读】OccNeRF: Self-Supervised Multi-Camera Occupancy Prediction with Neural Radiance Fields

    原文链接:https://arxiv.org/abs/2312.09243 3D目标检测任务受到无限类别和长尾问题的影响。3D占用预测则不同,其关注场景的几何重建,但多数方法需要从激光雷达点云获取的3D监督信号。 本文提出OccNeRF,一种自监督多相机占用预测模型。首先使用图像主干提取2D特征。为节省空间

    2024年02月02日
    浏览(21)
  • 【深度学习】自监督学习详解(self-supervised learning)

    深度学习被分为:监督学习,无监督学习和自监督学习。 监督学习近些年获得了巨大的成功,但是有如下的缺点: 1.人工标签相对数据来说本身是稀疏的,蕴含的信息不如数据内容丰富; 2.监督学习只能学到特定任务的知识,不是通用知识,一般难以直接迁移到其他任务中。

    2024年02月07日
    浏览(18)
  • 计算机视觉 + Self-Supervised Learning 五种算法原理解析

    自监督学习是一种机器学习方法,它利用未标记的数据来训练模型,而无需人工标注的标签。相反,自监督学习通过利用数据中的自动生成的标签或任务来训练模型。 现在,让我使用拟人化的方法来解释自监督学习的原理。假设你是一个学习者,而计算机视觉任务是你需要完

    2024年02月11日
    浏览(14)
  • EMP-SSL: TOWARDS SELF-SUPERVISED LEARNING IN ONETRAINING EPOCH

    Recently, self-supervised learning (SSL) has achieved tremendous success in learning image representation. Despite the empirical success, most self-supervised learning methods are rather “inefficient” learners, typically taking hundreds of training epochs to fully converge. In this work, we show that the key towards efficient self-supervised learning is

    2024年02月15日
    浏览(15)
  • 论文解读:SuperPoint: Self-Supervised Interest Point Detection and Description

    发表时间: 2018年 项目地址:https://arxiv.org/abs/1712.07629 论文地址:https://github.com/magicleap/SuperPointPretrainedNetwork 本文提出了一种用于训练计算机视觉中大量多视点几何问题的兴趣点检测器和描述符的自监督框架。与patch-based的神经网络相比,我们的全卷积模型处理全尺寸的图像,

    2024年02月14日
    浏览(20)
  • Video Self-Supervised Pertraining(Video SSL)

    Video Self-Supervised learning (SSL) :Video Model 在大规模 unabled dataset 上 Pertraining,然后在 labeled dataset 上 Finetuning: Video Pertraining Downstream Evaluation将预训练的Video Model经过Zero-Shot(不再训练)、Fine-tuning(需要再训练)、Linear probing(需要再训练).通常在以下Task上进行测试评估: A

    2024年03月14日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包