【SQL开发实战技巧】系列(六):从执行计划看NOT IN、NOT EXISTS 和 LEFT JOIN效率,记住内外关联条件不要乱放

这篇具有很好参考价值的文章主要介绍了【SQL开发实战技巧】系列(六):从执行计划看NOT IN、NOT EXISTS 和 LEFT JOIN效率,记住内外关联条件不要乱放。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

系列文章目录

【SQL开发实战技巧】系列(一):关于SQL不得不说的那些事
【SQL开发实战技巧】系列(二):简单单表查询
【SQL开发实战技巧】系列(三):SQL排序的那些事
【SQL开发实战技巧】系列(四):从执行计划讨论UNION ALL与空字符串&UNION与OR的使用注意事项
【SQL开发实战技巧】系列(五):从执行计划看IN、EXISTS 和 INNER JOIN效率,我们要分场景不要死记网上结论
【SQL开发实战技巧】系列(六):从执行计划看NOT IN、NOT EXISTS 和 LEFT JOIN效率,记住内外关联条件不要乱放
【SQL开发实战技巧】系列(七):从有重复数据前提下如何比较出两个表中的差异数据及对应条数聊起
【SQL开发实战技巧】系列(八):聊聊如何插入数据时比约束更灵活的限制数据插入以及怎么一个insert语句同时插入多张表
【SQL开发实战技巧】系列(九):一个update误把其他列数据更新成空了?Merge改写update!给你五种删除重复数据的写法!
【SQL开发实战技巧】系列(十):从拆分字符串、替换字符串以及统计字符串出现次数说起
【SQL开发实战技巧】系列(十一):拿几个案例讲讲translate|regexp_replace|listagg|wmsys.wm_concat|substr|regexp_substr常用函数
【SQL开发实战技巧】系列(十二):三问(如何对字符串字母去重后按字母顺序排列字符串?如何识别哪些字符串中包含数字?如何将分隔数据转换为多值IN列表?)
【SQL开发实战技巧】系列(十三):讨论一下常用聚集函数&通过执行计划看sum()over()对员工工资进行累加
【SQL开发实战技巧】系列(十四):计算消费后的余额&计算银行流水累计和&计算各部门工资排名前三位的员工
【SQL开发实战技巧】系列(十五):查找最值所在行数据信息及快速计算总和百之max/min() keep() over()、fisrt_value、last_value、ratio_to_report
【SQL开发实战技巧】系列(十六):数据仓库中时间类型操作(初级)日、月、年、时、分、秒之差及时间间隔计算
【SQL开发实战技巧】系列(十七):数据仓库中时间类型操作(初级)确定两个日期之间的工作天数、计算—年中周内各日期出现次数、确定当前记录和下一条记录之间相差的天数
【SQL开发实战技巧】系列(十八):数据仓库中时间类型操作(进阶)INTERVAL、EXTRACT以及如何确定一年是否为闰年及周的计算
【SQL开发实战技巧】系列(十九):数据仓库中时间类型操作(进阶)如何一个SQL打印当月或一年的日历?如何确定某月内第一个和最后—个周内某天的日期?
【SQL开发实战技巧】系列(二十):数据仓库中时间类型操作(进阶)获取季度开始结束时间以及如何统计非连续性时间的数据
【SQL开发实战技巧】系列(二十一):数据仓库中时间类型操作(进阶)识别重叠的日期范围,按指定10分钟时间间隔汇总数据
【SQL开发实战技巧】系列(二十二):数仓报表场景☞ 从分析函数效率一定快吗聊一聊结果集分页和隔行抽样实现方式
【SQL开发实战技巧】系列(二十三):数仓报表场景☞ 如何对数据排列组合去重以及通过如何找到包含最大值和最小值的记录这个问题再次用执行计划给你证明分析函数性能不一定高
【SQL开发实战技巧】系列(二十四):数仓报表场景☞通过案例执行计划详解”行转列”,”列转行”是如何实现的
【SQL开发实战技巧】系列(二十五):数仓报表场景☞结果集中的重复数据只显示一次以及计算部门薪资差异高效的写法以及如何对数据进行快速分组
【SQL开发实战技巧】系列(二十六):数仓报表场景☞聊聊ROLLUP、UNION ALL是如何分别做分组合计的以及如何识别哪些行是做汇总的结果行



前言

本篇文章讲解的主要内容是:从执行计划看NOT IN、NOT EXISTS 和 LEFT JOIN效率,还是那就话,别死记网上结论、在使用内外关联时,特别是简写方式时记住关联条件不要乱放!
【SQL开发实战技巧】这一系列博主当作复习旧知识来进行写作,毕竟SQL开发在数据分析场景非常重要且基础,面试也会经常问SQL开发和调优经验,相信当我写完这一系列文章,也能再有所收获,未来面对SQL面试也能游刃有余~。


一、从执行计划看NOT IN、NOT EXISTS 和 LEFT JOIN效率

有些单位的部门(如40)中一个员工也没有,只是设了一个部门名字,如下列语句:

select count(*) from dept where deptno=40;

如何通过关联查询把这些信息查出来?
同样有三种写法:NOT IN、NOT EXISTS 和LEFT JOIN
语句及PLAN如下(版本为11.2.0.4.0 )。
环境:

alter table dept add constraints pk_dept primary key (deptno); --如果你有就不用建了
  • NOT IN用法
EXPLAIN PLAN FOR select *
FROM dept
WHERE deptno NOT IN (SELECT emp.deptno FROM emp WHERE emp.deptno IS NOT NULL);
SELECT * FROM TABLE(dbms_xplan.display());

PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------
Plan hash value: 1353548327
--------------------------------------------------------------------------------
| Id  | Operation                    | Name    | Rows  | Bytes | Cost (%CPU)| Ti
--------------------------------------------------------------------------------
|   0 | SELECT STATEMENT             |         |     1 |    23 |     6  (17)| 00
|   1 |  MERGE JOIN ANTI             |         |     1 |    23 |     6  (17)| 00
|   2 |   TABLE ACCESS BY INDEX ROWID| DEPT    |     4 |    80 |     2   (0)| 00
|   3 |    INDEX FULL SCAN           | PK_DEPT |     4 |       |     1   (0)| 00
|*  4 |   SORT UNIQUE                |         |    14 |    42 |     4  (25)| 00
|*  5 |    TABLE ACCESS FULL         | EMP     |    14 |    42 |     3   (0)| 00
--------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
   4 - access("DEPTNO"="EMP"."DEPTNO")
       filter("DEPTNO"="EMP"."DEPTNO")
   5 - filter("EMP"."DEPTNO" IS NOT NULL)

19 rows selected
  • NOT EXISTS 用法
EXPLAIN PLAN FOR SELECT*
FROM dept
WHERE NOT EXISTS ( SELECT NULL FROM emp WHERE emp.deptno  =  dept.deptno) ; 
SELECT * FROM TABLE(dbms_xplan.display());
PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------
Plan hash value: 1353548327
--------------------------------------------------------------------------------
| Id  | Operation                    | Name    | Rows  | Bytes | Cost (%CPU)| Ti
--------------------------------------------------------------------------------
|   0 | SELECT STATEMENT             |         |     1 |    23 |     6  (17)| 00
|   1 |  MERGE JOIN ANTI             |         |     1 |    23 |     6  (17)| 00
|   2 |   TABLE ACCESS BY INDEX ROWID| DEPT    |     4 |    80 |     2   (0)| 00
|   3 |    INDEX FULL SCAN           | PK_DEPT |     4 |       |     1   (0)| 00
|*  4 |   SORT UNIQUE                |         |    14 |    42 |     4  (25)| 00
|*  5 |    TABLE ACCESS FULL         | EMP     |    14 |    42 |     3   (0)| 00
--------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
   4 - access("EMP"."DEPTNO"="DEPT"."DEPTNO")
       filter("EMP"."DEPTNO"="DEPT"."DEPTNO")
   5 - filter("EMP"."DEPTNO" IS NOT NULL)

19 rows selected
  • LEFT JOIN 用法

根据前面介绍过的左联知识,LEFT JOIN 取出的是左表中所有的数据,其中与右表不匹配的就表示左表NOT IN右表。
所以这里LEFT JOIN加上条件TS NULL,就是LEFT JOIN的写法:

EXPLAIN PLAN FOR
SELECT dept.*
FROM dept
LEFT JOIN emp ON emp.deptno = dept.deptno WHERE emp.deptno IS NULL;

SELECT * FROM TABLE(dbms_xplan.display());

PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------
Plan hash value: 1353548327
--------------------------------------------------------------------------------
| Id  | Operation                    | Name    | Rows  | Bytes | Cost (%CPU)| Ti
--------------------------------------------------------------------------------
|   0 | SELECT STATEMENT             |         |     1 |    23 |     6  (17)| 00
|   1 |  MERGE JOIN ANTI             |         |     1 |    23 |     6  (17)| 00
|   2 |   TABLE ACCESS BY INDEX ROWID| DEPT    |     4 |    80 |     2   (0)| 00
|   3 |    INDEX FULL SCAN           | PK_DEPT |     4 |       |     1   (0)| 00
|*  4 |   SORT UNIQUE                |         |    14 |    42 |     4  (25)| 00
|*  5 |    TABLE ACCESS FULL         | EMP     |    14 |    42 |     3   (0)| 00
--------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
   4 - access("EMP"."DEPTNO"="DEPT"."DEPTNO")
       filter("EMP"."DEPTNO"="DEPT"."DEPTNO")
   5 - filter("EMP"."DEPTNO" IS NOT NULL)

19 rows selected

通过看上面的执行计划,三个SQL用的都是 MERGE JOIN ANTI, 说明这三种方法的效率一样。
如果想改写,就要对比改写前后的PLAN,根据PLAN来判断并测试哪种方法的效率高,一定要记住不能凭借某些结论来碰运气。

二、外连接中的条件不要乱放,建议大家使用join而非(+)

对于系列三博客介绍的左联语句,见下面的数据。

SELECT l.str AS left_str, r.str AS right_str,r.status FROM l
LEFT JOIN r	ON l.v = r.v
ORDER BY 1 , 2 ;
LEFT_STR RIGHT_STR     STATUS
-------- --------- ----------
left_1             
left_2             
left_3   right_3            1
left_4   right_4            0

那现在有这么一个需求:对于其中的L表,四条数据都返回。而对于R表,我们需要只显示其中的status=1的数据,也就是下面这样的结果:

LEFT_STR RIGHT_STR     STATUS
-------- --------- ----------
left_1             
left_2             
left_3   right_3            1
left_4             

对于这个需求,可能有些人会加一个where条件!然后结果就变成了下面这样了:
left join写法:

SELECT l.str AS left_str, r.str AS right_str,r.status 
 FROM l
LEFT JOIN r  ON (l.v = r.v)
where  r.status=1
ORDER BY 1 , 2;
LEFT_STR RIGHT_STR     STATUS
-------- --------- ----------
left_3   right_3            1

(+)写法:

SELECT l.str AS left_str, r.str AS right_str, r.status
  FROM l, r
 where l.v = r.v(+)
   and r.status = 1
 ORDER BY 1, 2;
LEFT_STR RIGHT_STR     STATUS
-------- --------- ----------
left_3   right_3            1

而此时的执行计划:

SQL> EXPLAIN PLAN FOR
  2  SELECT l.str AS left_str, r.str AS right_str,r.status
  3   FROM l
  4  LEFT JOIN r  ON (l.v = r.v)
  5  where  r.status=1
  6  ORDER BY 1 , 2;

Explained

SQL> SELECT * FROM TABLE(dbms_xplan.display());

PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------
Plan hash value: 688663707
----------------------------------------------------------------------------
| Id  | Operation           | Name | Rows  | Bytes | Cost (%CPU)| Time     |
----------------------------------------------------------------------------
|   0 | SELECT STATEMENT    |      |     2 |    42 |     7  (15)| 00:00:01 |
|   1 |  SORT ORDER BY      |      |     2 |    42 |     7  (15)| 00:00:01 |
|*  2 |   HASH JOIN         |      |     2 |    42 |     6   (0)| 00:00:01 |
|*  3 |    TABLE ACCESS FULL| R    |     2 |    24 |     3   (0)| 00:00:01 |
|   4 |    TABLE ACCESS FULL| L    |     4 |    36 |     3   (0)| 00:00:01 |
----------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
   2 - access("L"."V"="R"."V")
   3 - filter("R"."STATUS"=1)

17 rows selected

很明显,结果以及执行计划(HASH JOIN)与我们期望得到的结果都不一致!!!这是很多人在写查询或更改查询时常遇到的一种错误。问题就在于所加条件的位置及写法,正确的写法分别如下:

SQL> SELECT l.str AS left_str, r.str AS right_str, r.status
  2    FROM l
  3    LEFT JOIN r
  4      ON (l.v = r.v and r.status = 1)
  5   ORDER BY 1, 2;

LEFT_STR RIGHT_STR     STATUS
-------- --------- ----------
left_1             
left_2             
left_3   right_3            1
left_4             



SQL> SELECT l.str AS left_str, r.str AS right_str, r.status
  2    FROM l, r
  3   where l.v = r.v(+)
  4     and r.status(+) = 1
  5   ORDER BY 1, 2;

LEFT_STR RIGHT_STR     STATUS
-------- --------- ----------
left_1             
left_2             
left_3   right_3            1
left_4             

看一下这时候的执行计划:

SQL> EXPLAIN PLAN FOR
  2  SELECT l.str AS left_str, r.str AS right_str, r.status
  3    FROM l
  4    LEFT JOIN r
  5      ON (l.v = r.v and r.status = 1)
  6   ORDER BY 1, 2;

Explained


SQL> SELECT * FROM TABLE(dbms_xplan.display());

PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------
Plan hash value: 2310059642
----------------------------------------------------------------------------
| Id  | Operation           | Name | Rows  | Bytes | Cost (%CPU)| Time     |
----------------------------------------------------------------------------
|   0 | SELECT STATEMENT    |      |     4 |    84 |     7  (15)| 00:00:01 |
|   1 |  SORT ORDER BY      |      |     4 |    84 |     7  (15)| 00:00:01 |
|*  2 |   HASH JOIN OUTER   |      |     4 |    84 |     6   (0)| 00:00:01 |
|   3 |    TABLE ACCESS FULL| L    |     4 |    36 |     3   (0)| 00:00:01 |
|*  4 |    TABLE ACCESS FULL| R    |     2 |    24 |     3   (0)| 00:00:01 |
----------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
   2 - access("L"."V"="R"."V"(+))
   4 - filter("R"."STATUS"(+)=1)

17 rows selected

以上两种写法结果均正确,且根据执行计划HASH JOIN OUTER明确走的是外连接。而且根据上面查询我们能够看出来JOIN的方式明显更容易辨别,这也是我反复建议使用JOIN的原因。
对于上面SQL我们还可以使用先过滤再关联的方式,即R表先过滤:

(select * from r where status=1) r

总结

同上一篇博客所说,在使用in exists或则NOT IN、NOT EXISTS 和 LEFT JOIN时候,不要想当然的认为in和not in效率极其低下,在本章案例中通过执行计划能够直观的看到,三者效率竟然一致了!!所以,读万卷书不如行万里路,网上别人做的总结再好,也不如自己实践一把来的真实。还有就是,在使用关联查询时候,关联条件和过滤条件一定要想好放哪里,不然你会想当然的错了!文章来源地址https://www.toymoban.com/news/detail-810600.html

到了这里,关于【SQL开发实战技巧】系列(六):从执行计划看NOT IN、NOT EXISTS 和 LEFT JOIN效率,记住内外关联条件不要乱放的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 51单片机蓝牙模块(HC05)运行原理

    51单片机蓝牙模块(HC05)运行原理

    在所有工作进行之前首先看一看自己的蓝牙模块是否是正常的,这一步很重要。一块正常的蓝牙模块是所有后续工作的基础! 首先把蓝牙模块链接到51单片机上 这时需要注意!!!我们需要将 蓝牙模块的RXD和单片机上的P30(RXD)引脚连接,将蓝牙模块的TXD和单片机上的P31(

    2023年04月08日
    浏览(30)
  • 性能对比 Go、Python、PHP、C/C++、C# .Net、Java、Node.js、… 等多编程语言

    性能对比 Go、Python、PHP、C/C++、C# .Net、Java、Node.js、… 等多编程语言

    1. 有人说 Python 性能没那么 Low? 这个我用 pypy 2.7 确认了下,确实没那么差, 如果用 NumPy 或其他版本 Python 的话,性能更快。但 pypy 还不完善,pypy3 在 beta,  所以一般情况,我是说一般情况下,这点比较让人不爽。   2. 有人说怎么没有 C#、Rust、Ruby 这个那个的? 我只想说语

    2024年03月09日
    浏览(22)
  • 51单片机(十六)AD/DA

    51单片机(十六)AD/DA

    ❤️ 专栏简介:本专栏记录了从零学习单片机的过程,其中包括51单片机和STM32单片机两部分;建议先学习51单片机,其是STM32等高级单片机的基础;这样再学习STM32时才能融会贯通。 ☀️ 专栏适用人群 :适用于想要从零基础开始学习入门单片机,且有一定C语言基础的的童鞋

    2024年02月05日
    浏览(9)
  • 数字藏品系统解析

    数字藏品系统解析

    数字藏品全模式生态链路 Internet接入包含: IOS/Android    H5    微信小程序   支付宝小程序 微信公众号 变现方式: 接入服务  认证/限额     抢购管理   申购中签  空投管理 API网关  接入服务      合成管理   盲盒管理  邀请好友 认证/限额 运营网关       兑换

    2023年04月09日
    浏览(15)
  • Arcgis处理:单波段提取详细步骤(以农田无人机影像为例)

    Arcgis处理:单波段提取详细步骤(以农田无人机影像为例)

    1.窗口-影像分析 2.选择要提取单波段的影像-添加函数 3.选择影像-插入函数-波段提取函数 4.方法:根据波段顺序提取-选择波段 5.提取单波段-组合:与波段对应(需要知道每一个ID具体对应的波段) 6.确定 . 7.选中提取的出来的单波段影像-保存

    2024年01月25日
    浏览(19)
  • 已解决requests.exceptions.JSONDecodeError: Expecting value: line 1 column 1 (char 0)

    已解决requests.exceptions.JSONDecodeError: Expecting value: line 1 column 1 (char 0)

    已解决requests.exceptions.JSONDecodeError: Expecting value: line 1 column 1 (char 0) 粉丝群一个小伙伴,想用Python爬取网页,但是发生了报错(当时他心里瞬间凉了一大截,跑来找我求助,然后顺利帮助他解决了,顺便记录一下希望可以帮助到更多遇到这个bug不会解决的小伙伴) 报错信息截

    2024年02月16日
    浏览(32)
  • Xliff Editor for Mac:Xliff文件编辑工具

    Xliff Editor for Mac:Xliff文件编辑工具

    Xliff Editor是一种专门用于编辑和管理XLIFF文件的工具。它可以帮助翻译人员和本地化团队更有效地协作,提高本地化效率和准确性。 XLIFF Editor通常具有以下功能: 支持多种文件格式:XLIFF Editor可以读取和编辑各种文件格式,如XML、HTML、Java Properties、iOS和Android资源文件等。

    2024年02月06日
    浏览(14)
  • 简单对比Java、Python、Go、Rust等常见语言计算斐波拉契数的性能

    简单对比Java、Python、Go、Rust等常见语言计算斐波拉契数的性能

    最近简单学了下Rust,以我这种菜鸟水平,没感受到什么安全、性能什么方面的优势,只觉得概念太多,编译各种报错。暂时也写不出来什么玩法,索性对比下各种学过的语言的性能。部分语言很早之前学过,很久不用就忘了,所以是用GPT写的。但运行逻辑很简单,所以应该没

    2024年03月16日
    浏览(14)
  • 【C++11】:统一的列表初始化|声明|STL变化

    【C++11】:统一的列表初始化|声明|STL变化

    ​                                                 🎬慕斯主页 : 修仙—别有洞天                                               ♈️ 今日夜电波:マイノリティ脈絡—ずっと真夜中でいいのに。                                          

    2024年03月26日
    浏览(13)
  • 编程创业赚钱-教你怎样开发热门配音程序

    编程创业赚钱-教你怎样开发热门配音程序

    欢迎来到我的小院,最近有个朋友说他看短视频老是听到一个男人的配音,有解说电影,讲知识的,就像这样(放一段这个配音),他也知道这应该是AI配音出来的,但是就想知道从哪里来的,是否可以免费使用。于是在我历经千辛万苦的寻找下,很快找到了他想要的东西,

    2024年02月06日
    浏览(10)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包