探索 Python:发现有趣的库——第 3 章:玩转自然语言处理

这篇具有很好参考价值的文章主要介绍了探索 Python:发现有趣的库——第 3 章:玩转自然语言处理。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

代码侠和算法仙正在一间充满科技感的实验室里探讨自然语言处理(NLP)的奥秘。

代码侠: 嘿,算法仙,我最近在研究自然语言处理,但感觉有点复杂啊。

算法仙: 呵呵,别担心,我来带你入门。首先,我们得安装两个强大的库,NLTK 和 spaCy。

# 安装NLTK和spaCy
pip install nltk spacy

代码侠: 好的,我已经安装好了。接下来呢?

算法仙: 第一步是学会分词,也就是将文本拆分成单独的词或标记。

import nltk
from nltk.tokenize import word_tokenize

nltk.download('punkt')
text = "Natural Language Processing is fascinating."
tokens = word_tokenize(text)
print(tokens)

代码侠: 输出是一串单词列表!真酷!

算法仙: 对。下一步,我们用 NLTK 做词性标注,这有助于识别每个词的语法角色。

import nltk
from nltk.tokenize import word_tokenize

text = "Natural Language Processing is fascinating."
nltk.download('averaged_perceptron_tagger')
tokens = word_tokenize(text)
tagged = nltk.pos_tag(tokens)
print(tagged)

代码侠: 每个词后面都有一个奇怪的缩写。

算法仙: 这些是词性标签。比如,‘NN’ 代表名词,‘VB’ 代表动词。现在,让我们用 spaCy 做命名实体识别。

import spacy

spacy.cli.download("en_core_web_sm")
nlp = spacy.load("en_core_web_sm")
doc = nlp("Apple is looking at buying U.K. startup for $1 billion")
for ent in doc.ents:
    print(ent.text, ent.label_)

代码侠: ‘Apple’, ‘U.K.’, 和 ‘$1 billion’ 都被识别为实体!

算法仙: 精确地说。下面我们来做情感分析,判断文本的情绪倾向。

import nltk
from nltk.sentiment import SentimentIntensityAnalyzer

nltk.download('vader_lexicon')

sia = SentimentIntensityAnalyzer()
sentiment = sia.polarity_scores("I love coding in Python!")
print(sentiment)

代码侠: 这个输出显示“积极”情绪的分数。

算法仙: 最后,让我们用这些技能来构建一个简单的聊天机器人。

from nltk.chat.util import Chat, reflections

pairs = [
    [r"hello|hi", ["Hey there!"]],
    [r"(.*) in (.*)", ["%1 in %2? That's interesting!"]],
    [r"bye", ["Goodbye!"]],
]

chatbot = Chat(pairs, reflections)
chatbot.converse()

代码侠: 这太有趣了!我现在可以和机器人聊天了!

算法仙: 正是。记住,这只是自然语言处理的冰山一角。继续探索,你将发现更多惊喜。

这一章节通过对话形式,将学习自然语言处理的过程变得生动有趣,同时提供了实际的代码示例和库安装指南,使读者能够轻松跟随并理解 NLP 的基础概念。文章来源地址https://www.toymoban.com/news/detail-811274.html

到了这里,关于探索 Python:发现有趣的库——第 3 章:玩转自然语言处理的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 解锁文字魔法:探索自然语言处理的秘密——从技术揭秘到应用实战!

    解锁文字魔法:探索自然语言处理的秘密——从技术揭秘到应用实战!

    目录  前言 关键技术——揭密自然语言处理的秘密武器! 领域应用——自然语言处理技术在不同领域的奇妙表演! 超越极限——自然语言处理技术面临的顽强挑战揭秘! 科技VS伦理——自然语言处理技术的发展与伦理社会的纠结较量! 开启应用奇迹!实战自然语言处理技术

    2024年01月19日
    浏览(50)
  • 如何用python做自然语言处理

    如何用python做自然语言处理

    如何用python做自然语言处理 使用Python进行自然语言处理(NLP)是非常常见和强大的。以下是一些基本步骤: 安装所需的库: 首先,您需要安装一些用于自然语言处理的Python库,如NLTK(自然语言工具包)、spaCy、TextBlob、gensim等。您可以使用 pip 命令来安装它们,例如: pip

    2024年02月14日
    浏览(45)
  • Python自然语言处理:NLTK入门指南

    自然语言处理(Natural Language Processing,NLP)是指计算机处理人类语言的领域。它是一门多学科交叉的学科,将计算机科学、人工智能、语言学等诸多学科的理论和方法融合在一起,将人类语言转化为计算机所能理解的形式,实现对人类语言的自动处理、理解和生成。NLP可以应

    2024年02月10日
    浏览(43)
  • 深入NLTK:Python自然语言处理库高级教程

    在前面的初级和中级教程中,我们了解了NLTK库中的基本和进阶功能,如词干提取、词形还原、n-gram模型和词云的绘制等。在本篇高级教程中,我们将深入探索NLTK的更多高级功能,包括句法解析、命名实体识别、情感分析以及文本分类。 句法解析是自然语言处理中的一项重要

    2024年02月14日
    浏览(52)
  • Python 自然语言处理 文本分类 地铁方面留言文本

    Python 自然语言处理 文本分类 地铁方面留言文本

    将关于地铁的留言文本进行自动分类。 不要着急,一步步来。 导入需要的库。 定义函数,加载用来分词的自定义词典。 定义函数,生成自己的停用词词典,得到一个文件。 我找的4个停用词词典下载地址:https://gitcode.net/mirrors/goto456/stopwords/-/tree/master 后面我会把自己整合好

    2024年02月09日
    浏览(44)
  • 掌握NLTK:Python自然语言处理库中级教程

    在之前的初级教程中,我们已经了解了NLTK(Natural Language Toolkit)的基本用法,如进行文本分词、词性标注和停用词移除等。在本篇中级教程中,我们将进一步探索NLTK的更多功能,包括词干提取、词形还原、n-gram模型以及词云的绘制。 词干提取是一种将词语简化为其基本形式

    2024年02月14日
    浏览(48)
  • 【Python入门系列】第十八篇:Python自然语言处理和文本挖掘

    【Python入门系列】第十八篇:Python自然语言处理和文本挖掘

    Python自然语言处理(Natural Language Processing,简称NLP)和文本挖掘是一门涉及处理和分析人类语言的学科。它结合了计算机科学、人工智能和语言学的知识,旨在使计算机能够理解、解释和生成人类语言。 NLTK(Natural Language Toolkit):它是Python中最受欢迎的NLP库之一,提供了丰

    2024年02月15日
    浏览(22)
  • 词!自然语言处理之词全解和Python实战!

    词!自然语言处理之词全解和Python实战!

    本文全面探讨了词在自然语言处理(NLP)中的多维角色。从词的基础概念、形态和词性,到词语处理技术如规范化、切分和词性还原,文章深入解析了每一个环节的技术细节和应用背景。特别关注了词在多语言环境和具体NLP任务,如文本分类和机器翻译中的应用。文章通过

    2024年02月05日
    浏览(45)
  • 自然语言处理2——轻松入门情感分析 - Python实战指南

    自然语言处理2——轻松入门情感分析 - Python实战指南

    情感分析是一项强大的数据分析工具,它能够帮助我们深入理解文本背后的情感色彩。在企业和社交媒体中,情感分析被广泛应用,以洞察用户的情感倾向,改善产品和服务,提升用户体验。本篇博客将带您轻松入门情感分析,使用Python中常见的情感分析库进行实战指南。

    2024年02月03日
    浏览(21)
  • 入门NLTK:Python自然语言处理库初级教程

    NLTK(Natural Language Toolkit)是一个Python库,用于实现自然语言处理(NLP)的许多任务。NLTK包括一些有用的工具和资源,如文本语料库、词性标注器、语法分析器等。在这篇初级教程中,我们将了解NLTK的基础功能。 在开始使用NLTK之前,我们需要确保已经正确安装了它。可以使

    2024年02月14日
    浏览(14)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包