ylov8的训练和预测使用(目标检测)

这篇具有很好参考价值的文章主要介绍了ylov8的训练和预测使用(目标检测)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

首先要配置文文件

1-配置数据集的yaml文件:

目录在ultralytics/cfg/datasets/下面:
例如我的:
(这里面的yaml文件在/ultralytics/cfg/datasets下面有很多,可以找几个参考一下)

path: /path/to/eye_datasets  # dataset root dir
train: train/images  # train images (relative to 'path') 4 images
val: valid/images  # val images (relative to 'path') 4 images
# test: images/test # test images (optional)
# Classes
names:
  0: eye

2- 配置.config/Ultralytics/settings.yaml 文件(/root/.config/Ultralytics/settings.yaml)

例如我的(更改了datasets_dir、weights_dir、runs_dir的路径):

settings_version: 0.0.4
datasets_dir: /share1/luli/yolov8/dataset/eye_datasets
weights_dir: /share1/luli/yolov8/eyeCodes/weights
runs_dir: /share1/luli/yolov8/eyeCodes/runs
uuid: 858bd79f1fda6637d7c2de0b0427e31d0157b9b3249c78658e02fe4956764daf
sync: true
api_key: ''
clearml: true
comet: true
dvc: true
hub: true
mlflow: true
neptune: true
raytune: true
tensorboard: true
wandb: true

训练代码

from ultralytics import YOLO
# 加载模型
model = YOLO('yolov8n.pt')  # 加载预训练模型(推荐用于训练)
# 使用1个GPU训练模型
results = model.train(data='/path/to/ultralytics/cfg/datasets/eyes.yaml', epochs=100, imgsz=640, device=[0])

训练完成:

ylov8的训练和预测使用(目标检测),实习记录,目标检测,人工智能,计算机视觉文章来源地址https://www.toymoban.com/news/detail-812073.html

注意事项:

import os, sys
sys.path.append("/share1/luli/yolov8")"/share1/luli/yolov8"这个里面下面的搜索范围添加到当前的文件里面。

from ..ultralytics import YOLO   ..表示在上上一级目录

到了这里,关于ylov8的训练和预测使用(目标检测)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包