线性代数:矩阵的定义

这篇具有很好参考价值的文章主要介绍了线性代数:矩阵的定义。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

一、定义

二、方阵

三、对角阵

四、单位阵

五、数量阵 

六、行(列)矩阵

 七、同型矩阵

八、矩阵相等

九、零矩阵

十、方阵的行列式


一、定义

线性代数:矩阵的定义,线性代数,线性代数,矩阵

二、方阵

线性代数:矩阵的定义,线性代数,线性代数,矩阵

三、对角阵

线性代数:矩阵的定义,线性代数,线性代数,矩阵

四、单位阵

线性代数:矩阵的定义,线性代数,线性代数,矩阵

五、数量阵 

线性代数:矩阵的定义,线性代数,线性代数,矩阵

六、行(列)矩阵

线性代数:矩阵的定义,线性代数,线性代数,矩阵

 七、同型矩阵

线性代数:矩阵的定义,线性代数,线性代数,矩阵

八、矩阵相等

线性代数:矩阵的定义,线性代数,线性代数,矩阵

九、零矩阵

线性代数:矩阵的定义,线性代数,线性代数,矩阵

十、方阵的行列式

线性代数:矩阵的定义,线性代数,线性代数,矩阵文章来源地址https://www.toymoban.com/news/detail-814226.html

到了这里,关于线性代数:矩阵的定义的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 线性代数:线性方程求解、矩阵的逆、线性组合、线性独立

    本文参考www.deeplearningbook.org一书第二章2.3 Identity and Inverse Matrices 2.4 Linear Dependence and Span 本文围绕 线性方程求解 依次介绍矩阵的逆、线性组合、线性独立等线性代数的基础知识点。 本文主要围绕求解线性方程展开,我们先把线性方程写出来,方程如下: 其中,是已知的;,

    2024年02月08日
    浏览(15)
  • 0203逆矩阵-矩阵及其运算-线性代数

    定义7 对于 n n n 阶矩阵A,如果有一个 n n n 阶矩阵B,使 A B = B A = E AB=BA=E A B = B A = E 则说矩阵A是可逆的,并把矩阵B称为A的逆矩阵,简称逆阵。 定理1 若矩阵A可逆,则 ∣ A ∣ ≠ 0 vert Avert not = 0 ∣ A ∣  = 0 证明: A 可逆,即有 A − 1 ,使得 A A − 1 = E ∣ A A − 1 ∣ = ∣ A

    2024年04月13日
    浏览(21)
  • 线性代数——矩阵

    学习高等数学和线性代数需要的初等数学知识 线性代数——行列式 线性代数——矩阵 线性代数——向量 线性代数——线性方程组 线性代数——特征值和特征向量 线性代数——二次型 本文大部分内容皆来自李永乐老师考研教材和视频课。 从矩阵的转置章节到方阵和行列式

    2023年04月08日
    浏览(29)
  • 线性代数(七) 矩阵分析

    线性代数(七) 矩阵分析

    从性线变换我们得出,矩阵和函数是密不可分的。如何用函数的思维来分析矩阵。 通过这个定义我们就定义了矩阵序列的 收敛性 。 研究矩阵序列收敛性的常用方法,是用《常见向量范数和矩阵范数》来研究矩阵序列的极限。 长度是范数的一个特例。事实上,Frobenius范数对

    2024年02月08日
    浏览(16)
  • 线性代数-矩阵的本质

    线性代数-矩阵的本质

    2024年02月11日
    浏览(15)
  • 线性代数:矩阵的秩

    矩阵的秩(Rank)是线性代数中一个非常重要的概念,表示一个矩阵的行向量或列向量的线性无关的数量,通常用 r ( A ) r(boldsymbol{A}) r ( A ) 表示。具体来说: 对于一个 m × n mtimes n m × n 的实矩阵 A boldsymbol{A} A ,它的行秩 r ( A ) r(boldsymbol{A}) r ( A ) 定义为 A boldsymbol{A} A 的各

    2024年02月07日
    浏览(16)
  • 线性代数——求逆矩阵

    线性代数——求逆矩阵

    利用计算技巧凑出公式:两边加E、提取公因式、没有公因式可提时利用隐形的E=AA^(-1),因为E可看作系数1 主对角线有矩阵(副对角线是0矩阵),则分别逆后放在原位置 副对角线有矩阵(主对角线是0矩阵),则分别逆后互换位置

    2024年02月11日
    浏览(14)
  • 线性代数基础--矩阵

    线性代数基础--矩阵

     矩阵是由排列在矩形阵列中的数字或其他数学对象组成的表格结构。它由行和列组成,并且在数学和应用领域中广泛使用。 元素:矩阵中的每个数字称为元素。元素可以是实数、复数或其他数学对象。 维度:矩阵的维度表示矩阵的行数和列数。一个 m × n 的矩阵有 m 行和

    2024年02月11日
    浏览(13)
  • 线性代数3:矩阵

    线性代数3:矩阵

    目录 矩阵研究的是什么呢? 逆阵 什么叫做逆阵?  例题1:  例题2:  逆阵的存在性 定理1: 定理2: 定理3: 定理4: 拉普拉茨方程 方阵可以的条件  例题3:  Note1: 例题4  Note2:  Note3: Note4:  Note5:  Note6: Note7:  例题5:  逆矩阵的求法: 方法1:伴随矩阵法:  方

    2024年02月13日
    浏览(13)
  • 线性代数_对称矩阵

    线性代数_对称矩阵

    对称矩阵是线性代数中一种非常重要的矩阵结构,它具有许多独特的性质和应用。下面是对称矩阵的详细描述: ### 定义 对称矩阵,即对称方阵,是指一个n阶方阵A,其转置矩阵等于其本身,即A^T = A。这意味着方阵A中的元素满足交换律,即对于任意的i和j(i ≤ j),都有A[

    2024年02月02日
    浏览(12)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包