学习笔记之 机器学习之预测雾霾

这篇具有很好参考价值的文章主要介绍了学习笔记之 机器学习之预测雾霾。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Encoder-Decoder

  • 基础的Encoder-Decoder是存在很多弊端的,最大的问题就是信息丢失。Encoder将输入编码为固定大小的向量的过程实际上是一个“信息有损的压缩过程”,如果信息量越大,那么这个转化向量的过程对信息的损失就越大,同时,随着序列长度(sequence length)的增加,意味着时间维度上的序列很长,
  • 由于基础的Encoder-Decoder模型链接Encoder和Decoder的组件仅仅是一个固定大小的状态向量,这就使得Decoder无法直接无关注输入信息的更多细节。
  • 为了解决这些缺陷,随后又引入了Attention机制以及Bi-directional encoder layer等。Attention模型的特点是Encoder不再将整个输入序列编码为固定长度的中间向量,而是编码成一个【向量序列】。这样,在产生每一个输出的时候,都能够做到充分利用输入序列携带的信息。而且这种方法在翻译任务中取得了非常不错的成果。

学习笔记之 机器学习之预测雾霾,机器学习文章来源地址https://www.toymoban.com/news/detail-817193.html

Seq2Seq (序列到序列)

  • 输入序列和输出序列的长度是可变的。
  • Seq2Seq可以看作是Encoder-Decoder针对某一类任务的模型框架

到了这里,关于学习笔记之 机器学习之预测雾霾的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • [学习笔记] [机器学习] 13. 集成学习进阶(XGBoost、OTTO案例实现、LightGBM、PUBG玩家排名预测)

    [学习笔记] [机器学习] 13. 集成学习进阶(XGBoost、OTTO案例实现、LightGBM、PUBG玩家排名预测)

    视频链接 数据集下载地址:无需下载 学习目标: 知道 XGBoost 算法原理 知道 otto 案例通过 XGBoost 实现流程 知道 LightGBM 算法原理 知道 PUBG 案例通过 LightGBM 实现流程 知道 Stacking 算法原理 知道住房月租金预测通过 Stacking 实现流程 学习目标: 了解 XGBoost 的目标函数推导过程 知

    2024年02月09日
    浏览(30)
  • 机器学习笔记之狄利克雷过程(五)——基于狄利克雷过程的预测任务

    机器学习笔记之狄利克雷过程(五)——基于狄利克雷过程的预测任务

    上一节从概率图结构的角度介绍了 狄利克雷过程 ,本节将介绍狄利克雷过程的预测任务。 从概率图的角度/样本 X mathcal X X 的 生成过程 观察,从狄利克雷过程 DP [ α , H ( θ ) ] text{DP}[alpha,mathcal H(theta)] DP [ α , H ( θ )] 中采样得到一个离散的 随机测度 G mathcal G G : G ∼ D

    2024年02月09日
    浏览(13)
  • 机器学习之线性回归与逻辑回归【完整房价预测和鸢尾花分类代码解释】

    机器学习之线性回归与逻辑回归【完整房价预测和鸢尾花分类代码解释】

    目录 前言 一、什么是线性回归 二、什么是逻辑回归 三、基于Python 和 Scikit-learn 库实现线性回归 示例代码:  使用线性回归来预测房价: 四、基于Python 和 Scikit-learn 库实现逻辑回归 五、总结  线性回归的优缺点总结: 逻辑回归(Logistic Regression)是一种常用的分类算法,具有

    2024年04月13日
    浏览(13)
  • 机器学习之MATLAB代码--MATLAB量子粒子群优化LSTM超参数负荷预测(十三)

    机器学习之MATLAB代码--MATLAB量子粒子群优化LSTM超参数负荷预测(十三)

    代码按照下列顺序依次: 1、 2、 3、 4、 5、 6、 7、 8、 9、 10、 11、 结果 如有需要代码和数据的同学请在评论区发邮箱,一般一天之内会回复,请点赞+关注谢谢!!

    2024年02月11日
    浏览(12)
  • 机器学习之MATLAB代码--基于VMD与SSA优化lssvm的功率预测(多变量)(七)

    机器学习之MATLAB代码--基于VMD与SSA优化lssvm的功率预测(多变量)(七)

    先对外层代码的揭露,包括:顺序而下 1、 2、 3、 4、 5、 6、 7、 8、 9、 10、 11、 接下来是内嵌代码,就是下面两个文件夹的代码,实在是太多,想要的留言吧! 数据是由时间、风速、风向等等因素组成的文件。 结果 结果图太多,就先给出这么多,如有需要代码和数据的同

    2024年02月12日
    浏览(12)
  • 【机器学习算法】KNN鸢尾花种类预测案例和特征预处理。全md文档笔记(已分享,附代码)

    【机器学习算法】KNN鸢尾花种类预测案例和特征预处理。全md文档笔记(已分享,附代码)

    本系列文章md笔记(已分享)主要讨论机器学习算法相关知识。机器学习算法文章笔记以算法、案例为驱动的学习,伴随浅显易懂的数学知识,让大家掌握机器学习常见算法原理,应用Scikit-learn实现机器学习算法的应用,结合场景解决实际问题。包括K-近邻算法,线性回归,逻

    2024年02月19日
    浏览(16)
  • 机器学习之MATLAB代码--IWOA_BILSTM(基于改进鲸鱼算法优化的BiLSTM预测算法)(十六)
  • 【学习资源】终身机器学习之增量学习

    【学习资源】终身机器学习之增量学习

    从机器学习存在的问题谈起,介绍增量学习可以解决怎样的问题,增量学习的类别,实现增量学习的方法,增量学习的评价指标和常用数据集,类别增量学习典型方法和代码库以及参考资源,希望能帮助大家用增量学习提高图像分类、对象检测、语义分割、行为识别、对象重

    2023年04月27日
    浏览(7)
  • 机器学习之集成学习概念介绍

    机器学习中的集成学习(Ensemble Learning)是一种通过组合多个模型来提高整体性能的技术。它的基本思想是将多个学习器(弱学习器)组合成一个更强大的学习器,以提高整体性能和泛化能力。集成学习可以在各种机器学习任务中使用,包括分类、回归和聚类。 弱学习器(

    2024年01月22日
    浏览(12)
  • 机器学习之概率学习朴素贝叶斯(NB)

    机器学习之概率学习朴素贝叶斯(NB)

    依据概率原则进行分类。如天气预测概率。 朴素贝叶斯(Naive Bayes, NB)适合场景:为估计一个结果的概率,从众多属性中提取的信息应该被同时考虑。 很多算法忽略了弱影响的特征(若有大量弱影响的特征,它们组合在一起的影响可能会很大),但NB算法利用了所有可以获得

    2024年02月20日
    浏览(18)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包