cs231n assignment1——SVM

这篇具有很好参考价值的文章主要介绍了cs231n assignment1——SVM。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

整体思路

  1. 加载CIFAR-10数据集并展示部分数据
  2. 数据图像归一化,减去均值(也可以再除以方差)
  3. svm_loss_naive和svm_loss_vectorized计算hinge损失,用拉格朗日法列hinge损失函数
  4. 利用随机梯度下降法优化SVM
  5. 在训练集和验证集计算准确率,保存最好的模型在测试集进行预测计算准确率

加载展示划分数据集

加载CIFAR-10数据集

# Load the raw CIFAR-10 data.
#加载CIFAR-10数据集
cifar10_dir = 'cs231n/datasets/cifar-10-batches-py'

# Cleaning up variables to prevent loading data multiple times (which may cause memory issue)
#清理变量以防止多次加载数据
try:
   del X_train, y_train
   del X_test, y_test
   print('Clear previously loaded data.')
except:
   pass

X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)

# As a sanity check, we print out the size of the training and test data.
#打印出训练和测试数据的大小。
print('Training data shape: ', X_train.shape)
print('Training labels shape: ', y_train.shape)
print('Test data shape: ', X_test.shape)
print('Test labels shape: ', y_test.shape)
# Visualize some examples from the dataset.
#可视化部分数据
# We show a few examples of training images from each class.
#从每个类别中展示一些训练图片
classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
num_classes = len(classes)
samples_per_class = 7
for y, cls in enumerate(classes):
    idxs = np.flatnonzero(y_train == y)
    idxs = np.random.choice(idxs, samples_per_class, replace=False)
    for i, idx in enumerate(idxs):
        plt_idx = i * num_classes + y + 1
        plt.subplot(samples_per_class, num_classes, plt_idx)
        plt.imshow(X_train[idx].astype('uint8'))
        plt.axis('off')
        if i == 0:
            plt.title(cls)
plt.show()

划分数据集

# Split the data into train, val, and test sets. In addition we will
# create a small development set as a subset of the training data;
# we can use this for development so our code runs faster.
#将数据集划分为训练集49000张,测试集1000张和验证集1000张
#创建小样本数据加速训练
num_training = 49000
num_validation = 1000
num_test = 1000
num_dev = 500

# Our validation set will be num_validation points from the original
# training set.
#验证集取自原始训练集
mask = range(num_training, num_training + num_validation)
X_val = X_train[mask]
y_val = y_train[mask]

# Our training set will be the first num_train points from the original
# training set.
#训练集也取自原始训练集
mask = range(num_training)
X_train = X_train[mask]
y_train = y_train[mask]

# We will also make a development set, which is a small subset of
# the training set.
mask = np.random.choice(num_training, num_dev, replace=False)
X_dev = X_train[mask]
y_dev = y_train[mask]

# We use the first num_test points of the original test set as our
# test set.
mask = range(num_test)
X_test = X_test[mask]
y_test = y_test[mask]

print('Train data shape: ', X_train.shape)
print('Train labels shape: ', y_train.shape)
print('Validation data shape: ', X_val.shape)
print('Validation labels shape: ', y_val.shape)
print('Test data shape: ', X_test.shape)
print('Test labels shape: ', y_test.shape)

数据集格式转换

# Preprocessing: reshape the image data into rows
#将图像数据转化为行
X_train = np.reshape(X_train, (X_train.shape[0], -1))
X_val = np.reshape(X_val, (X_val.shape[0], -1))
X_test = np.reshape(X_test, (X_test.shape[0], -1))
X_dev = np.reshape(X_dev, (X_dev.shape[0], -1))

# As a sanity check, print out the shapes of the data
#输出数据集形状
print('Training data shape: ', X_train.shape)
print('Validation data shape: ', X_val.shape)
print('Test data shape: ', X_test.shape)
print('dev data shape: ', X_dev.shape)

图像数据归一化

cs231n assignment1——SVM,cs231n,支持向量机,python,机器学习

# Preprocessing: subtract the mean image
#减去均值
# first: compute the image mean based on the training data
#计算训练数据的均值
mean_image = np.mean(X_train, axis=0)
print(mean_image[:10]) # 输出部分元素
plt.figure(figsize=(4,4))
plt.imshow(mean_image.reshape((32,32,3)).astype('uint8')) # visualize the mean image
plt.show()

# second: subtract the mean image from train and test data
#减去均值(更严谨的话可以继续除以方差)
X_train -= mean_image
X_val -= mean_image
X_test -= mean_image
X_dev -= mean_image

# third: append the bias dimension of ones (i.e. bias trick) so that our SVM
# only has to worry about optimizing a single weight matrix W.
#数据维度转变简便计算优化权重矩阵W
X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))])
X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))])
X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))])
X_dev = np.hstack([X_dev, np.ones((X_dev.shape[0], 1))])

print(X_train.shape, X_val.shape, X_test.shape, X_dev.shape)

评估多类 SVM 损失函数的函数

cs231n assignment1——SVM,cs231n,支持向量机,python,机器学习

​ (图来自《从零开始:机器学习的数学原理和算法实践》)
cs231n assignment1——SVM,cs231n,支持向量机,python,机器学习
cs231n assignment1——SVM,cs231n,支持向量机,python,机器学习

所以我们在linear_svm.py中完善svm_loss_naive

def svm_loss_naive(W, X, y, reg):
    """
    Structured SVM loss function, naive implementation (with loops).

    Inputs have dimension D, there are C classes, and we operate on minibatches
    of N examples.

    Inputs:
    - W: A numpy array of shape (D, C) containing weights.
    - X: A numpy array of shape (N, D) containing a minibatch of data.
    - y: A numpy array of shape (N,) containing training labels; y[i] = c means
      that X[i] has label c, where 0 <= c < C.
    - reg: (float) regularization strength

    Returns a tuple of:
    - loss as single float
    - gradient with respect to weights W; an array of same shape as W
    """
    #梯度矩阵初始化
    dW = np.zeros(W.shape)  # initialize the gradient as zero

    # compute the loss and the gradient
    #计算损失和梯度
    num_classes = W.shape[1]
    num_train = X.shape[0]
    loss = 0.0
    for i in range(num_train):
        #W*Xi
        score = X[i].dot(W)
        correct_score = score[y[i]]
        for j in range(num_classes):
            #预测正确
            if j == y[i]:
                continue
            #W*Xi-Wyi*Xi+1
            margin = score[j] - correct_score + 1  # 拉格朗日
            if margin > 0:
                loss += margin

    # Right now the loss is a sum over all training examples, but we want it
    # to be an average instead so we divide by num_train.
    #平均损失
    loss /= num_train
	#加上正则化λ||W||²
    # Add regularization to the loss.
    loss += reg * np.sum(W * W)

    #############################################################################
    # TODO:                                                                     #
    # Compute the gradient of the loss function and store it dW.                #
    # Rather that first computing the loss and then computing the derivative,   #
    # it may be simpler to compute the derivative at the same time that the     #
    # loss is being computed. As a result you may need to modify some of the    #
    # code above to compute the gradient.                                       #
    #############################################################################
    # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
	
    dW /= num_train
	
    dW += reg * W

    # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

    return loss, dW

评估svm_loss_naive函数

# Evaluate the naive implementation of the loss we provided for you:
from cs231n.classifiers.linear_svm import svm_loss_naive
import time

# generate a random SVM weight matrix of small numbers
# 随机初始化权重矩阵
W = np.random.randn(3073, 10) * 0.0001 
#计算梯度和损失
loss, grad = svm_loss_naive(W, X_dev, y_dev, 0.000005)
print('loss: %f' % (loss, ))

在验证集计算梯度损失

数值估计损失函数的梯度,并将数值估计值与计算的梯度进行比较

# Once you've implemented the gradient, recompute it with the code below
# and gradient check it with the function we provided for you

# Compute the loss and its gradient at W.
#计算损失和梯度
loss, grad = svm_loss_naive(W, X_dev, y_dev, 0.0)

# Numerically compute the gradient along several randomly chosen dimensions, and
# compare them with your analytically computed gradient. The numbers should match
# almost exactly along all dimensions.
from cs231n.gradient_check import grad_check_sparse
f = lambda w: svm_loss_naive(w, X_dev, y_dev, 0.0)[0]
grad_numerical = grad_check_sparse(f, W, grad)

# do the gradient check once again with regularization turned on
# you didn't forget the regularization gradient did you?
loss, grad = svm_loss_naive(W, X_dev, y_dev, 5e1)
f = lambda w: svm_loss_naive(w, X_dev, y_dev, 5e1)[0]
grad_numerical = grad_check_sparse(f, W, grad)

用向量形式计算损失函数

cs231n assignment1——SVM,cs231n,支持向量机,python,机器学习

所以我们在linear_svm.py中完善svm_loss_vectorized

def svm_loss_vectorized(W, X, y, reg):
    """
    Structured SVM loss function, vectorized implementation.

    Inputs and outputs are the same as svm_loss_naive.
    """
    loss = 0.0
    dW = np.zeros(W.shape)  # initialize the gradient as zero

    #############################################################################
    # TODO:                                                                     #
    # Implement a vectorized version of the structured SVM loss, storing the    #
    # result in loss.                                                           #
    #############################################################################
    # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

    num_train=X.shape[0]
    classes_num=X.shape[1]
    
    score = X.dot(W)
    #矩阵大小变化,大小不同的矩阵不可以加减
    correct_scores = score[range(num_train), list(y)].reshape(-1, 1) #[N, 1]
    margin = np.maximum(0, score - correct_scores + 1)
    margin[range(num_train), list(y)] = 0
    #正则化
    loss = np.sum(margin) / num_train
    loss += 0.5 * reg * np.sum(W * W)

    # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

    #############################################################################
    # TODO:                                                                     #
    # Implement a vectorized version of the gradient for the structured SVM     #
    # loss, storing the result in dW.                                           #
    #                                                                           #
    # Hint: Instead of computing the gradient from scratch, it may be easier    #
    # to reuse some of the intermediate values that you used to compute the     #
    # loss.                                                                     #
    #############################################################################
    # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
    #大于0的置1,其余为0
    margin[margin>0] = 1
    margin[range(num_train),list(y)] = 0
    
    margin[range(num_train),y] -= np.sum(margin,1)
    
    dW=X.T.dot(margin)
    
    dW=dW/num_train
    dW=dW+reg*W
    

    # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

    return loss, dW

然后我们对比两种损失函数计算的时间差异

# Complete the implementation of svm_loss_vectorized, and compute the gradient
# of the loss function in a vectorized way.

# The naive implementation and the vectorized implementation should match, but
# the vectorized version should still be much faster.
tic = time.time()
_, grad_naive = svm_loss_naive(W, X_dev, y_dev, 0.000005)
toc = time.time()
print('Naive loss and gradient: computed in %fs' % (toc - tic))

tic = time.time()
_, grad_vectorized = svm_loss_vectorized(W, X_dev, y_dev, 0.000005)
toc = time.time()
print('Vectorized loss and gradient: computed in %fs' % (toc - tic))

# The loss is a single number, so it is easy to compare the values computed
# by the two implementations. The gradient on the other hand is a matrix, so
# we use the Frobenius norm to compare them.
difference = np.linalg.norm(grad_naive - grad_vectorized, ord='fro')
print('difference: %f' % difference)

使用SGD优化

cs231n assignment1——SVM,cs231n,支持向量机,python,机器学习

from __future__ import print_function

from builtins import range
from builtins import object
import numpy as np
from ..classifiers.linear_svm import *
from ..classifiers.softmax import *
from past.builtins import xrange


class LinearClassifier(object):
    def __init__(self):
        self.W = None

    def train(
        self,
        X,
        y,
        learning_rate=1e-3,
        reg=1e-5,
        num_iters=100,
        batch_size=200,
        verbose=False,
    ):
        """
        Train this linear classifier using stochastic gradient descent.

        Inputs:
        - X: A numpy array of shape (N, D) containing training data; there are N
          training samples each of dimension D.
        - y: A numpy array of shape (N,) containing training labels; y[i] = c
          means that X[i] has label 0 <= c < C for C classes.
        - learning_rate: (float) learning rate for optimization.
        - reg: (float) regularization strength.
        - num_iters: (integer) number of steps to take when optimizing
        - batch_size: (integer) number of training examples to use at each step.
        - verbose: (boolean) If true, print progress during optimization.

        Outputs:
        A list containing the value of the loss function at each training iteration.
        """
        num_train, dim = X.shape
        num_classes = (
            np.max(y) + 1
        )  # assume y takes values 0...K-1 where K is number of classes
        if self.W is None:
            # lazily initialize W
            self.W = 0.001 * np.random.randn(dim, num_classes)

        # Run stochastic gradient descent to optimize W
        loss_history = []
        for it in range(num_iters):
            X_batch = None
            y_batch = None

            #########################################################################
            # TODO:                                                                 #
            # Sample batch_size elements from the training data and their           #
            # corresponding labels to use in this round of gradient descent.        #
            # Store the data in X_batch and their corresponding labels in           #
            # y_batch; after sampling X_batch should have shape (batch_size, dim)   #
            # and y_batch should have shape (batch_size,)                           #
            #                                                                       #
            # Hint: Use np.random.choice to generate indices. Sampling with         #
            # replacement is faster than sampling without replacement.              #
            #########################################################################
            # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
            hint=np.random.choice(num_train,batch_size,replace=True)
            X_batch = X[hint]
            y_batch = y[hint]


            # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

            # evaluate loss and gradient
            loss, grad = self.loss(X_batch, y_batch, reg)
            loss_history.append(loss)

            # perform parameter update
            #########################################################################
            # TODO:                                                                 #
            # Update the weights using the gradient and the learning rate.          #
            #########################################################################
            # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

            self.W = self.W - learning_rate * grad

            # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

            if verbose and it % 100 == 0:
                print("iteration %d / %d: loss %f" % (it, num_iters, loss))

        return loss_history

    def predict(self, X):
        """
        Use the trained weights of this linear classifier to predict labels for
        data points.

        Inputs:
        - X: A numpy array of shape (N, D) containing training data; there are N
          training samples each of dimension D.

        Returns:
        - y_pred: Predicted labels for the data in X. y_pred is a 1-dimensional
          array of length N, and each element is an integer giving the predicted
          class.
        """
        y_pred = np.zeros(X.shape[0])
        ###########################################################################
        # TODO:                                                                   #
        # Implement this method. Store the predicted labels in y_pred.            #
        ###########################################################################
        # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

        scores = X.dot(self.W)
        y_pred = y_pred+np.argmax(scores,1)

        # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
        return y_pred

    def loss(self, X_batch, y_batch, reg):
        """
        Compute the loss function and its derivative.
        Subclasses will override this.

        Inputs:
        - X_batch: A numpy array of shape (N, D) containing a minibatch of N
          data points; each point has dimension D.
        - y_batch: A numpy array of shape (N,) containing labels for the minibatch.
        - reg: (float) regularization strength.

        Returns: A tuple containing:
        - loss as a single float
        - gradient with respect to self.W; an array of the same shape as W
        """
        pass


class LinearSVM(LinearClassifier):
    """ A subclass that uses the Multiclass SVM loss function """

    def loss(self, X_batch, y_batch, reg):
        return svm_loss_vectorized(self.W, X_batch, y_batch, reg)


class Softmax(LinearClassifier):
    """ A subclass that uses the Softmax + Cross-entropy loss function """

    def loss(self, X_batch, y_batch, reg):
        return softmax_loss_vectorized(self.W, X_batch, y_batch, reg)

利用SGD迭代减少损失

from cs231n.classifiers import LinearSVM
#加载SVM
svm = LinearSVM()
tic = time.time()
loss_hist = svm.train(X_train, y_train, learning_rate=1e-7, reg=2.5e4,
                      num_iters=1500, verbose=True)
toc = time.time()
print('That took %fs' % (toc - tic))

在训练集和验证集计算准确率

#在训练集和验证集进行预测结果,计算准确率
y_train_pred = svm.predict(X_train)
print('training accuracy: %f' % (np.mean(y_train == y_train_pred), ))
y_val_pred = svm.predict(X_val)
print('validation accuracy: %f' % (np.mean(y_val == y_val_pred), ))

计算预测数据准确率

# Use the validation set to tune hyperparameters (regularization strength and
# learning rate). You should experiment with different ranges for the learning
# rates and regularization strengths; if you are careful you should be able to
# get a classification accuracy of about 0.39 (> 0.385) on the validation set.

# Note: you may see runtime/overflow warnings during hyper-parameter search.
# This may be caused by extreme values, and is not a bug.

# results is dictionary mapping tuples of the form
# (learning_rate, regularization_strength) to tuples of the form
# (training_accuracy, validation_accuracy). The accuracy is simply the fraction
# of data points that are correctly classified.
results = {}
best_val = -1   # The highest validation accuracy that we have seen so far.
best_svm = None # The LinearSVM object that achieved the highest validation rate.

################################################################################
# TODO:                                                                        #
# Write code that chooses the best hyperparameters by tuning on the validation #
# set. For each combination of hyperparameters, train a linear SVM on the      #
# training set, compute its accuracy on the training and validation sets, and  #
# store these numbers in the results dictionary. In addition, store the best   #
# validation accuracy in best_val and the LinearSVM object that achieves this  #
# accuracy in best_svm.                                                        #
#                                                                              #
# Hint: You should use a small value for num_iters as you develop your         #
# validation code so that the SVMs don't take much time to train; once you are #
# confident that your validation code works, you should rerun the validation   #
# code with a larger value for num_iters.                                      #
################################################################################

# Provided as a reference. You may or may not want to change these hyperparameters
#学习率
learning_rates = [1e-7, 5e-5]
#reg
regularization_strengths = [2.5e4, 5e4]

# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

for learning_rate in learning_rates:
  for regularization_strength in regularization_strengths:
    svm = LinearSVM()
    #svm训练
    loss_hist = svm.train(X_train, y_train, learning_rate=learning_rate, reg=regularization_strength, num_iters=1500, verbose=True)
    #在训练集预测,计算平均准确率
    y_train_pred2 = svm.predict(X_train)
    training_accuracy = np.mean(y_train == svm.predict(X_train))
    print('training accuracy: %f' % (np.mean(y_train == y_train_pred2)))
    #在验证集预测,计算平均准确率
    y_val_pred2 = svm.predict(X_val)
    val_accuracy = np.mean(y_val== svm.predict(X_val))
    print('validation accuracy: %f' % (np.mean(y_val == y_val_pred2)))
    #在训练集和验证集计算的准确率保存在results
    results[(learning_rate,regularization_strength)] = (training_accuracy,val_accuracy)
    print(results)
    #取最大的准确率保存在best_val
    if best_val < val_accuracy:
      best_val = val_accuracy
      best_svm = svm

# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****

# Print out results.
for lr, reg in sorted(results):
    train_accuracy, val_accuracy = results[(lr, reg)]
    print('lr %e reg %e train accuracy: %f val accuracy: %f' % (
                lr, reg, train_accuracy, val_accuracy))

print('best validation accuracy achieved during cross-validation: %f' % best_val)

将最好的模型保存在best_svm中,在测试集计算准确率

# Evaluate the best svm on test set
y_test_pred = best_svm.predict(X_test)
test_accuracy = np.mean(y_test == y_test_pred)
print('linear SVM on raw pixels final test set accuracy: %f' % test_accuracy)

主要解决问题:

  • 损失函数和梯度的推导

  • 为什么SGD越迭代可能产生loss变大的情况:

    因为SGD在每一步放弃了对梯度准确性的追求,每步仅仅随机采样少量样本来计算梯度,计算速度快,内存开销小,但是由于每步接受的信息量有限,对梯度的估计出现偏差也在所难免,造成目标函数曲线收敛轨迹显得很不稳定,伴有剧烈波动,甚至有时出现不收敛的情况。(这很正常!)

将最好的模型保存在best_svm中,在测试集计算准确率

# Evaluate the best svm on test set
y_test_pred = best_svm.predict(X_test)
test_accuracy = np.mean(y_test == y_test_pred)
print('linear SVM on raw pixels final test set accuracy: %f' % test_accuracy)

主要解决问题:

  • 损失函数和梯度的推导

  • 为什么SGD越迭代可能产生loss变大的情况:

    因为SGD在每一步放弃了对梯度准确性的追求,每步仅仅随机采样少量样本来计算梯度,计算速度快,内存开销小,但是由于每步接受的信息量有限,对梯度的估计出现偏差也在所难免,造成目标函数曲线收敛轨迹显得很不稳定,伴有剧烈波动,甚至有时出现不收敛的情况。(这很正常!)

一个冷笑话(这能看出来是啥就有鬼了,果然用词很严谨

cs231n assignment1——SVM,cs231n,支持向量机,python,机器学习文章来源地址https://www.toymoban.com/news/detail-822362.html

到了这里,关于cs231n assignment1——SVM的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • CS231N assignment3-transformer,GAN,self-supervised,LSTM

    这部分作业内容很大,上传到github费了很多时间,参考的是这篇:如何在GitHub上传大文件(≥100M) | 码农家园 (codenong.com) 但是还是没传成功··· 所以我直接传到网盘里了 链接:https://pan.baidu.com/s/1T8Sc2Owq6OMtDSo5SNKlaA  提取码:784w  --来自百度网盘超级会员V2的分享 然后简单介

    2024年02月15日
    浏览(9)
  • cs231n assignmen3 Extra Credit: Image Captioning with LSTMs

    cs231n assignmen3 Extra Credit: Image Captioning with LSTMs

    题面 结合课程和上面的讲解,这部分就是让我们来实现lstm的前向操作,具体的操作流程在上面都写好了 解析 看代码注释吧 代码 输出 题面 计算lstm的反向操作 解析 sigmoid求导 Tanh 求导 反向传播讲解可以看这个 然后结合代码注释,想想链式求导法则就好了 代码 输出 题面 让

    2024年02月10日
    浏览(13)
  • 分类预测 | Matlab实现CS-SVM布谷鸟算法优化支持向量机的数据分类预测

    分类预测 | Matlab实现CS-SVM布谷鸟算法优化支持向量机的数据分类预测

    分类效果 基本描述 1.Matlab实现CS-SVM布谷鸟算法优化支持向量机的数据分类预测。 2.自带数据,多输入,单输出,多分类。优化参数为:SVM的gamma和c。图很多,包括迭代曲线图、混淆矩阵图、预测效果图等等 3.直接替换数据即可使用,保证程序可正常运行。运行环境MATLAB2018及

    2024年01月17日
    浏览(16)
  • 支持向量机SVM原理

    支持向量机SVM原理

    目录 支持向量机SVM原理 SVM原理 从线性分类器说起 SVM的目标是最大化分类间隔 转化为对偶问题求解                     【数之道】支持向量机SVM是什么,八分钟直觉理解其本质_哔哩哔哩_bilibili      SVM是由Vapnik等人于1995年提出的,在之后的20多年里它都是最具影响力的机

    2024年02月11日
    浏览(10)
  • 机器学习-支持向量机SVM

    机器学习-支持向量机SVM

    在本练习中,我们将使用支持向量机(SVM)来构建垃圾邮件分类器。 我们将从一些简单的2D数据集开始使用SVM来查看它们的工作原理。 然后,我们将对一组原始电子邮件进行一些预处理工作,并使用SVM在处理的电子邮件上构建分类器,以确定它们是否为垃圾邮件。 我们要做

    2024年02月12日
    浏览(41)
  • SVM(支持向量机)-机器学习

    SVM(支持向量机)-机器学习

    支持向量机(Support Vector Machine,SVM) 是一种用于分类和回归分析的监督学习算法 。它属于机器学习中的一类强大而灵活的模型,广泛应用于模式识别、图像分类、自然语言处理等领域。 基本原理: SVM的基本原理是通过找到能够有效分隔不同类别的超平面来进行分类。在二维

    2024年02月03日
    浏览(49)
  • 机器学习——支持向量机SVM

    机器学习——支持向量机SVM

    支持向量机(SVM)是一种二类分类模型,其基本模型是在特征空间上找到最佳的分离超平面使得训练集上正负样本间隔最大,间隔最大使它有别于感知机,支持向量机也可通过核技巧使它成为非线性分类器。支持向量机的学习策略是间隔最大化,可将其转化为一个求解凸二次

    2024年01月17日
    浏览(15)
  • MATLAB 支持向量机(SVM)

    MATLAB 支持向量机(SVM)

    简单来讲就是如何将两个数据用点、直线、平面分开。。。。。 二维空间中,要分开两个线性可分的点集合,我们需要找到一条分类直线即可, 通俗来讲,在这个二维平面中,可以把两类点的分开的直线有很多条,那么这些直线中,哪一条才是最好的呢?也就是如何选择出

    2024年02月03日
    浏览(11)
  • 一文全解经典机器学习算法之支持向量机SVM(关键词:SVM,对偶、间隔、支持向量、核函数、特征空间、分类)

    一文全解经典机器学习算法之支持向量机SVM(关键词:SVM,对偶、间隔、支持向量、核函数、特征空间、分类)

    之前所介绍的逻辑回归是基于似然度的分类方法,通过对数据概率进行建模来得到软输出。但这种分类方法其实稍加“繁琐”,因为要 估计数据的概率分布作为中间步骤 。这就像当一个人学习英语时,他只要直接报个班或者自己看书就行了,而不需要先学习诘屈聱牙的拉丁

    2024年02月03日
    浏览(49)
  • 机器学习之SVM支持向量机

    机器学习之SVM支持向量机

    目录 经典SVM 软间隔SVM 核SVM SVM分类器应用于人脸识别 SVM优点 SVM缺点  支持向量机(Support Vector Machine,SVM)是一种二分类模型,其基本思想是在特征空间中找到一个最优的超平面,使得正负样本点到该超平面的距离最大化,从而实现对样本的分类。 经典SVM为二分类模型,对

    2024年02月11日
    浏览(14)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包