八、计算机视觉-边界填充

这篇具有很好参考价值的文章主要介绍了八、计算机视觉-边界填充。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


前言

在Python中使用OpenCV进行边界填充(也称为zero padding)是一种常见的图像处理操作,通常用于在图像周围添加额外的像素以便进行卷积或其他操作。下面是使用OpenCV进行边界填充的基本原理和方法

一、原理

边界填充的原理是在图像的周围添加一圈像素,这些像素的值通常设置为0,因此称为zero padding。这样做的目的是为了确保在对图像进行卷积等操作时,边界像素也能够得到正确的处理,而不会出现边界效应导致输出图像尺寸减小的情况。
这怎么理解呢,让我们通过一个简单的例子来说明:
假设我们有一张 5x5 的灰度图像如下所示:
八、计算机视觉-边界填充,计算机视觉,人工智能,计算机视觉,人工智能
我们想要对这个图像进行 3x3 的均值滤波,即每个像素的值都取其周围 3x3 区域像素值的平均值。假设我们的卷积核是一个全1的 3x3 矩阵。
进行卷积操作时,我们将卷积核从左上角开始依次移动到图像的每个像素位置,对应位置的输出像素值计算如下:
对于位置(1,1),与卷积核重叠的像素为:
八、计算机视觉-边界填充,计算机视觉,人工智能,计算机视觉,人工智能
算这些像素的平均值,得到输出像素值为:(1+2+3+6+7+8+11+12+13) / 9 = 7.444
同样的方法,我们可以得到输出图像中其他位置的像素值。然而,当卷积核与图像边界相交时,由于边界像素周围没有足够的像素可以计算平均值,因此会出现边界效应。在上述例子中,当卷积核位于图像的左上角时,它与图像的左边界和上边界相交,导致无法计算边界像素的周围像素值,因此无法得到正确的输出像素值。
为了解决边界效应,常见的方法之一是通过在图像周围添加额外的像素,即边界填充(zero padding),从而确保卷积核在图像边界处能够正确应用。

二、具体的实现

代码如下(示例):

image = cv2.imread('./img/dog21.png')
image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
# 定义填充参数
top_border = 10
bottom_border = 10
left_border = 10
right_border = 10

# 使用常数填充,填充值为0
bordered_image_constant = cv2.copyMakeBorder(image, top_border, bottom_border, left_border, right_border, cv2.BORDER_CONSTANT, value=0)

# 使用边界复制
bordered_image_replicate = cv2.copyMakeBorder(image, top_border, bottom_border, left_border, right_border, cv2.BORDER_REPLICATE)

# 使用边界反射
bordered_image_reflect = cv2.copyMakeBorder(image, top_border, bottom_border, left_border, right_border, cv2.BORDER_REFLECT)

# 使用边界反射101
bordered_image_reflect_101 = cv2.copyMakeBorder(image, top_border, bottom_border, left_border, right_border, cv2.BORDER_REFLECT_101)

# 使用边界包裹
bordered_image_wrap = cv2.copyMakeBorder(image, top_border, bottom_border, left_border, right_border, cv2.BORDER_WRAP)




# 创建子图
fig, ((ax1, ax2, ax3),(ax4, ax5,ax6)) = plt.subplots(2, 3, figsize=(20, 10), sharex=True, sharey=True)



# 显示图像
ax1.imshow(image.copy())
ax1.set_title('original')
ax2.imshow(bordered_image_constant)
ax2.set_title('constant')
ax3.imshow(bordered_image_replicate, cmap='gray')
ax3.set_title('replicate')
ax4.imshow(bordered_image_reflect, cmap='gray')
ax4.set_title('reflect')
ax5.imshow(bordered_image_reflect_101, cmap='gray')
ax5.set_title('reflect_101')
ax6.imshow(bordered_image_wrap, cmap='gray')
ax6.set_title('wrap')
plt.show()

我们通过创建子图的方式显示,我们创建一个2行3列的图片显示,这样方面我们对比,你也可以像之前那样一张张显示也行。
我们首先看下cv2.copyMakeBorder介绍

cv2.copyMakeBorder() 是 OpenCV 库中的一个函数,用于在图像周围创建边框。下面是该函数的参数及其解释:

src:要处理的输入图像。
top:在源图像的顶部添加的像素数目。
bottom:在源图像的底部添加的像素数目。
left:在源图像的左侧添加的像素数目。
right:在源图像的右侧添加的像素数目。
borderType:边框类型,可以是以下之一:
cv2.BORDER_CONSTANT:添加一个常量值的边框。此时需要提供一个value参数,用于指定常量值。
cv2.BORDER_REPLICATE:复制源图像的边界像素。
cv2.BORDER_REFLECT:对源图像的边界进行反射,比如:fedcba|abcdefgh|hgfedcb
cv2.BORDER_REFLECT_101:对源图像的边界进行反射,但略微不同,比如:gfedcb|abcdefgh|gfedcba
cv2.BORDER_WRAP:对源图像的边界进行包装,比如:cdefgh|abcdefgh|abcdefg
value(可选):当borderType为cv2.BORDER_CONSTANT时,指定的常量值。
该函数返回一个新的图像,其大小为原始图像加上指定边框大小,并且根据指定的边框类型进行填充。

执行返回如下:
八、计算机视觉-边界填充,计算机视觉,人工智能,计算机视觉,人工智能
上面参数中 主要就是borderType参数,
cv2.BORDER_CONSTANT:添加一个常量值的边框。此时需要提供一个value参数,用于指定常量值。这个最好理解,就是给边缘加一个边框 边框颜色就是value的值,如果是0就是黑色。

cv2.BORDER_REPLICATE:这个很好理解,就是边缘像素点向外复制。你可以看上图的第3图片的边缘 就能看出最外层一圈都是一个像素值
如下图
八、计算机视觉-边界填充,计算机视觉,人工智能,计算机视觉,人工智能
cv2.BORDER_REFLECT:对源图像的边界进行反射 你可以想象图片外部边缘为轴,把边缘像素对折到外部,如图:我们看底部填充的像素 就是图片最底部像素的一个反射,当然其他区域也是如此。就不一一显示了 。

八、计算机视觉-边界填充,计算机视觉,人工智能,计算机视觉,人工智能
cv2.BORDER_REFLECT_101:和上面差不多 只不过他是以边缘像素为轴进行反射 效果如图:
八、计算机视觉-边界填充,计算机视觉,人工智能,计算机视觉,人工智能
cv2.BORDER_WRAP:对源图像的边界进行包装,可以结合上面这些复制方法看下 这个复制也很好理解,是:cdefgh|abcdefgh|abcdefg文章来源地址https://www.toymoban.com/news/detail-826796.html

到了这里,关于八、计算机视觉-边界填充的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 计算机视觉与人工智能在医美人脸皮肤诊断方面的应用

    计算机视觉与人工智能在医美人脸皮肤诊断方面的应用

    近年来,随着计算机技术和人工智能的不断发展,中医领域开始逐渐探索利用这些先进技术来辅助面诊和诊断。在皮肤望诊方面,也出现了一些现代研究,尝试通过图像分析技术和人工智能算法来客观化地获取皮肤相关的色形参数,从而辅助中医面诊。 一些研究将计算机视觉

    2024年02月11日
    浏览(11)
  • 计算机图形学06:中点Bresenham画圆(并填充边界,例如:边界用红色,内部用绿色填充)

    计算机图形学06:中点Bresenham画圆(并填充边界,例如:边界用红色,内部用绿色填充)

    作者 :非妃是公主 专栏 :《计算机图形学》 博客地址 :https://blog.csdn.net/myf_666 个性签:顺境不惰,逆境不馁,以心制境,万事可成。——曾国藩 专栏名称 专栏地址 软件工程 专栏——软件工程 计算机图形学 专栏——计算机图形学 操作系统 专栏——操作系统 软件测试 专

    2024年01月24日
    浏览(13)
  • 阶段五:深度学习和人工智能(学习人工智能的应用领域,如自然语言处理,计算机视觉等)

    Python是人工智能领域最流行的编程语言之一,它具有简单易学、功能强大、库丰富等优点,因此在自然语言处理、计算机视觉等领域得到了广泛应用。 自然语言处理 自然语言处理是人工智能领域的一个重要分支,它主要研究如何让计算机理解和处理人类语言。Python在自然语

    2024年02月04日
    浏览(23)
  • 毕业设计选题:基于深度学习的舌头分割系统 人工智能 YOLO 计算机视觉

    毕业设计选题:基于深度学习的舌头分割系统 人工智能 YOLO 计算机视觉

    目录 前言 课题背景和意义 实现技术思路 一、 算法理论基础 1.1 Snake模型  1.2 几何约束  1.3 切片重组 二、 数据集 三、实验及结果分析 最后     📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。

    2024年02月19日
    浏览(286)
  • 毕业设计:基于机器学习的硬币检测识别系统 人工智能 YOLO 计算机视觉

    毕业设计:基于机器学习的硬币检测识别系统 人工智能 YOLO 计算机视觉

    目录 前言 课题背景和意义 实现技术思路 一、 硬币检测方法 1.1 规格、变形监测 1.2 变色检测 二、 数据集 三、实验及结果分析 3.1 实验环境搭建 3.2 模型训练 最后     📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为

    2024年02月20日
    浏览(52)
  • 图像识别和计算机视觉:如何应用人工智能技术实现自动化检测和识别

    图像识别和计算机视觉:如何应用人工智能技术实现自动化检测和识别

      在数字化时代,图像数据成为了我们日常生活中不可或缺的一部分。然而,随着图像数据的急剧增加,传统的手动处理和分析方法已经无法满足我们的需求。这就引出了图像识别和计算机视觉技术的重要性。本文将介绍人工智能技术在图像识别和计算机视觉领域的应用,以

    2024年02月05日
    浏览(13)
  • 第九课:机器学习与人工智能、计算机视觉、自然语言处理 NLP及机器人

    第九课:机器学习与人工智能、计算机视觉、自然语言处理 NLP及机器人

    各位小伙伴想要博客相关资料的话关注公众号:chuanyeTry即可领取相关资料! 以区分飞蛾为例: 标记数据如下。 虚线为决策边界如下。 右下角表为混淆矩阵。 本质上是用任意线段来切分决策空间,不一定是直线。 不用统计学的算法。模拟人类学习的过程,将数据进行加权求

    2024年02月03日
    浏览(17)
  • 毕业设计选题:基于机器学习的票据表格分割识别系统 人工智能 YOLO 计算机视觉

    毕业设计选题:基于机器学习的票据表格分割识别系统 人工智能 YOLO 计算机视觉

    目录 前言 课题背景和意义 实现技术思路 一、 算法理论基础 1.1 卷积神经网络 1.3 EM算法 二、实验及结果分析 2.1 数据处理 2.2 模型训练 3.2 结果分析 最后     📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗

    2024年02月22日
    浏览(50)
  • 毕业设计选题 基于深度学习的人流量预测系统 人工智能 YOLO 计算机视觉

    毕业设计选题 基于深度学习的人流量预测系统 人工智能 YOLO 计算机视觉

    目录  前言 设计思路 一、课题背景与意义 二、算法理论原理 2.1 卷积神经网络 2.2 注意力机制 三、检测的实现 3.1 数据处理 3.2 实验环境搭建 3.3 实验及结果分析 最后        📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要

    2024年01月19日
    浏览(50)
  • 人工智能详细笔记:计算机视觉、目标检测与R-CNN系列 YOLO系列模型

    计算机视觉概述 :计算机视觉是一种利用计算机算法和数学模型来模拟和自动化人类视觉的学科领域。 计算机视觉的地位 :计算机视觉(CV)与自然语言处理(NLP)、语音识别(SR)并列为机器学习方向的三大热点方向。 计算机视觉的常见任务 :下面将从粗粒度到细粒度介

    2024年02月08日
    浏览(20)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包