【机器学习线性代数】03 再论矩阵:空间映射关系的描述

这篇具有很好参考价值的文章主要介绍了【机器学习线性代数】03 再论矩阵:空间映射关系的描述。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

1.利用矩阵表示空间映射

2.矮胖矩阵对空间的降维压缩

2.1.空间降维的原理

2.2.实文章来源地址https://www.toymoban.com/news/detail-839409.html

到了这里,关于【机器学习线性代数】03 再论矩阵:空间映射关系的描述的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 机器学习-线性代数-向量、基底及向量空间

    机器学习-线性代数-向量、基底及向量空间

    理解 直观理解 行向量:把数字排成一行A = [ 4   5 ] [4~ 5] [ 4   5 ] 列向量:把数字排成一列A =   [ 4 5 ] left [ begin{matrix} 4 \\\\ 5 \\\\ end{matrix} right ]   [ 4 5 ​ ] 几何意义 默认在基底条件下(直角坐标系)中的坐标表示的一个点,也可以理解以原点为起点,到目标终点A的有向线段

    2024年02月06日
    浏览(16)
  • 机器学习-线性代数-1-向量、基底及向量空间

    机器学习-线性代数-1-向量、基底及向量空间

    理解 直观理解 行向量:把数字排成一行A = [ 4   5 ] [4~ 5] [ 4   5 ] 列向量:把数字排成一列A =   [ 4 5 ] left [ begin{matrix} 4 \\\\ 5 \\\\ end{matrix} right ]   [ 4 5 ​ ] 几何意义 默认在基底条件下(直角坐标系)中的坐标表示的一个点,也可以理解以原点为起点,到目标终点A的有向线段

    2024年02月10日
    浏览(17)
  • 机器学习-线性代数-3-逆映射与向量空间

    矩阵的本质是映射。对于一个 m × n m × n m × n 的矩阵,乘法 y = A x y = Ax y = A x 的作用就是将向量从 n n n 维原空间中的 x x x 坐标位置,映射到 m m m 维目标空间的 y y y 坐标位置,这是正向映射的过程。那么,如果已知结果向量的坐标 y y y 去反推原向量的坐标 x x x ,这个过程就

    2024年02月15日
    浏览(9)
  • 机器学习-线性代数-2-逆映射与向量空间

    矩阵的本质是映射。对于一个 m × n m × n m × n 的矩阵,乘法 y = A x y = Ax y = A x 的作用就是将向量从 n n n 维原空间中的 x x x 坐标位置,映射到 m m m 维目标空间的 y y y 坐标位置,这是正向映射的过程。那么,如果已知结果向量的坐标 y y y 去反推原向量的坐标 x x x ,这个过程就

    2024年02月11日
    浏览(11)
  • 【机器学习线性代数】06 解方程组:从空间的角度再引入

    目录 1.从空间映射的角度再来看方程组 2.究竟由谁决定方程组解的个数 2.1.情况一: r =

    2024年04月13日
    浏览(11)
  • 机器学习——线性代数中矩阵和向量的基本介绍

    机器学习——线性代数中矩阵和向量的基本介绍

    矩阵的基本概念(这里不多说,应该都知道) 而向量就是一个特殊的矩阵,即向量只有一列,是个n*1的矩阵 注 :一般矩阵用大写字母表示,向量用小写字母表示 先从简单开始,即一个矩阵和一个向量相乘的运算 矩阵相乘的结果的维度为 m*k 矩阵乘法满足结合律不满足交换律

    2024年02月21日
    浏览(14)
  • 高等代数(七)-线性变换03:线性变换的矩阵

    § 3 § 3 §3 线性变换的矩阵 设 V V V 是数域 P P P 上 n n n 维线性空间, ε 1 , ε 2 , ⋯   , ε n varepsilon_{1}, varepsilon_{2}, cdots, varepsilon_{n} ε 1 ​ , ε 2 ​ , ⋯ , ε n ​ 是 V V V 的一组基, 现在我们来建立线性变换与矩阵的关系. 空间 V V V 中任一向量 ξ xi ξ 可以经 ε 1 , ε 2 , ⋯  

    2024年02月20日
    浏览(12)
  • 【线性代数/机器学习】矩阵的奇异值与奇异值分解(SVD)

    我们知道,对于一个 n × n ntimes n n × n 的矩阵 A A A ,如果 A A A 有 n n n 个线性无关的特征向量,则 A A A 可以相似对角化,即存在可逆矩阵 P P P 使得 A = P Λ P − 1 A=PLambda P^{-1} A = P Λ P − 1 ,其中 Λ Lambda Λ 是 A A A 的特征值组成的对角阵。 P P P 的列实际上就是 A A A 的特征向

    2024年02月10日
    浏览(9)
  • 线性代数笔记11--矩阵空间、秩1矩阵

    1. 矩阵空间 所有的 3 × 3 3 times 3 3 × 3 矩阵构成的空间 M M M 。 考虑空间 M M M 的子空间 上三角矩阵 对称矩阵 对角矩阵 3 x 3 3x3 3 x 3 矩阵空间的基: [ 1 0 0 0 0 0 0 0 0 ] [ 0 1 0 0 0 0 0 0 0 ] [ 0 0 1 0 0 0 0 0 0 ] [ 0 0 0 1 0 0 0 0 0 ] [ 0 0 0 0 1 0 0 0 0 ] [ 0 0 0 0 0 1 0 0 0 ] [ 0 0 0 0 0 0 1 0 0 ] [ 0 0 0 0 0 0

    2024年03月10日
    浏览(13)
  • 线性代数拾遗(6)—— 向量空间投影与投影矩阵

    线性代数拾遗(6)—— 向量空间投影与投影矩阵

    参考:麻省理工线性代数 阅读本文前请先了解矩阵四个基本子空间,参考:线性代数拾遗(5) —— 矩阵的四个基本子空间 考察二维平面投影,如下将向量 b pmb{b} b 投影到向量 a pmb{a} a 方向,得到 a pmb{a} a 的子空间中的向量 p pmb{p} p ,假设是 a pmb{a} a 的 x x x 倍 如图可见

    2024年02月07日
    浏览(14)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包