数学建模【模糊综合评价分析】

这篇具有很好参考价值的文章主要介绍了数学建模【模糊综合评价分析】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、模糊综合评价分析简介

提到模糊综合评价分析,就先得知道模糊数学。1965年美国控制论学家L.A.Zadeh发表的论文“Fuzzy sets”标志着模糊数学的诞生。

模糊数学又称Fuzzy数学,是研究和处理模糊性现象的一种数学理论和方法。模糊性数学发展的主流是在它的应用方面。由于模糊性概念已经找到了模糊集的描述方式,人们运用概念进行判断、评价、推理、决策和控制的过程也可以用模糊性数学的方法来描述。例如模糊聚类分析、模糊模式识别、模糊综合评判、模糊决策与模糊预测、模糊控制、模糊信息处理等。这些方法构成了一种模糊性系统理论,构成了一种思辨数学的雏形,它已经在医学、气象、心理、经济管理、石油、地质、环境、生物、农业、林业、化工、语言、控制、遥感、教育、体育等方面取得具体的研究成果。

这里要对模糊有个概念。举数学归纳法和秃子悖论为例。我们知道数学归纳法的证明步骤,但考虑这么一种情况:小魏满头秀发,减少一根头发,不是秃子,假设减少k根不是秃子,那么减少k+1根也不是秃子,但真的是这样吗?

对这种情况的解释,文学给出:这是压死骆驼的最后一根稻草;哲学给出:量变引起质变;数学给出:引入模糊概念。

来看数学中研究的量的划分

数学建模【模糊综合评价分析】,数学建模

而生活中处处存在模糊性(和确定性相对)

  • 确定性概念:性别、天气、年龄、身高、体重...
  • 模糊性概念:帅、高、白、年轻...

像性别可以确定知道,年龄也是一个准确的数。而帅,什么才叫帅,长成什么样才叫帅?这是模糊的。

二、适用赛题

综合评价类,和前面的综合评价类模型差不多。

三、模型流程

数学建模【模糊综合评价分析】,数学建模

四、流程分析

1.确定三集

三集分别是:因素集、评语集、权重集。但在确定它们之前先来了解模糊集合和隶属函数的概念。

模糊集合(Fuzzy set)和隶属函数

  • 模糊集合:用来描述模糊性概念的集合(帅、高、白、年轻)
  • 与经典集合相比,模糊集合承认亦此亦彼(即a ∈ A和a ∉ A可以同时发生)
  • 数学中对于模糊集合的刻画:隶属函数(membership function)

举个例子。A = “年轻”(年轻是一个模糊概念),U = (0, 150)表示年龄的集合,有

数学建模【模糊综合评价分析】,数学建模

对于U中每一个元素,均对应于A中的一个隶属度,隶属度介于[0, 1],越大表示越属于这种集合。

注意

  • UA(x)不唯一
  • 若对于一个模糊集合A我们给定了一个隶属函数UA,则我们可以将A和UA视为等同(方便符号表示,即A(x) = UA(x))

模糊集合的分类

一般的,可以将模糊集合分为三类:

  • 偏小型:年轻、小、冷
  • 中间型:中年、中、暖
  • 偏大型:年老、大、热

可以想象,隶属函数的图像会和模糊集合的类型有很大关系

数学建模【模糊综合评价分析】,数学建模

模糊评价问题是要把论域(集合论知识,不知道没关系)中的对象对应评语集中一个指定的评语后者将方案作为评语集并选择一个最优的方案。(两个角度)

在模糊综合评价中,引入了三个集合:

  • 因素集(评价指标集):U = {u1, u2, ..., un}
  • 评语集(评价的结果):V = {v1, v2, ..., vm}
  • 权重集(指标的权重):A = {a1, a2, ..., an}

例如:评价一个学生的表现

U = {专业排名, 课外实践, 志愿服务, 竞赛成绩}

V = {优, 良, 差}

A = {0.5, 0.1, 0.1, 0.3}

在指标个数较少的评价中,运用一级模糊综合评判,而在问题较为复杂,指标较多时,运用多层次模糊综合评判(后面讲解),以提高精度。

对于因素集,一级模糊评价中,n往往较小(n ≤ 5)且指标间相关性不强。对于评语集,评语的个数与指标的个数无关。对于权重集,如何确定权重,用通用的方法即可,无数据:层次分析法,有数据:熵权法。

2.确定模糊综合判断矩阵

对指标ui来说,对各个评语的隶属度记为Ri向量,Ri = [ri1, ri2, ..., rim],分别是指标ui对评语1的隶属度,指标ui对评语2的隶属度,...,指标ui对评语m的隶属度。

将R1、R2、...、Rn组成一个n×m阶的矩阵,这就是各指标的模糊综合判断矩阵,第一列就是各个指标对于评语1的隶属度。

所以现在只需要得到隶属度就行了。

确定隶属度有三个方法

(1)模糊统计法(数模比赛中很少用,要设计发放问卷,可能来不及,但实际做研究用的较多)

原理:找多个人去对同一个模糊概念进行描述,用隶属频率去定义隶属度。

例子:定义“年轻人”的隶属函数

  1. 定义人的年龄为论域U,调查n个人
  2. 让这n个人仔细考虑好“年轻人”的含义后,给出他们认为的最合适的年龄区间
  3. 对于任意一个确定的年龄,例如25岁,若这n个人中有m个人的年龄区间包含有25,则称m/n为25岁对于“年轻人”的隶属频率
  4. 依此类堆,我们可以找出所有年龄对子“年轻人的隶属频率
  5. 若n很大时,隶属频率会趋于稳定,此时我们可将其视为隶属度,进而得到隶属函数

(2)借助已有的客观尺度(需要有合适的指标,并能收集到数据)

如下图例子

论域 模糊集 隶属度
设备 设备完好 设备完好率
产品 质量稳定 正品率
家庭 小康家庭 恩格尔系数

注意:这里找的指标必须介于0和1之间(隶属度范围)。(如果不是,进行归一化处理)

(3)指派法(根据问题的性质直接套用某些分布作为隶属函数,主观性较强)

数学建模【模糊综合评价分析】,数学建模

找到适合的方法,得到隶属函数进而得到隶属度,从而得出模糊综合判断矩阵。

3.综合评判

当我们有了模糊综合判断矩阵R和权重集A,就可得到综合评判结果B = A * R。

B是一个向量,B = [b1, b2, ..., bm],分布是要评价对象对评语1的隶属度,要评价对象对评语2的隶属度,...,要评价对象对评语m的隶属度。

若max{b1, b2, ..., bm} = bk,则要评价的对象要划分到评语k这一类。

4.多级模糊综合评判

例子如下

数学建模【模糊综合评价分析】,数学建模

评价指标可以划分出层级,那么就需要使用多级模糊综合评判了。上图就是三级模糊综合评判。

不过这个其实就是多个一级模糊综合评判。得到每一级的指标对于评语的隶属度,求出上一级指标对于评语的隶属度,从后面往前面求,从n级往1级求,最后得出结果。文章来源地址https://www.toymoban.com/news/detail-841815.html

到了这里,关于数学建模【模糊综合评价分析】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 数学建模—评价模型—灰色关联度分析Vs灰色综合评价

            黑色系统:只明确系统和环境的关系,内部未知         白色系统:内部结构、元素、组成、实现机理已知         灰色系统:部分明确系统与环境见关系、系统结构、实现过程。 灰色系统实例:(1)社会经济系统(企业收入、相关因素) 灰色系统理论

    2024年02月04日
    浏览(15)
  • 数学建模学习(3):综合评价类问题整体解析及分析步骤

    数学建模学习(3):综合评价类问题整体解析及分析步骤

    对物体进行评价,用具体的分值评价它们的优劣 选这两人其中之一当男朋友,你会选谁? 不同维度的权重会产生不同的结果 所以找到 每个维度的权重是最核心的问题 0.25 供应商 ID 可靠性 指标 2 指标 3 指标 4 指标 5 1 1 4 100 56 1000 2 2 6 105 55 2000 正向指标处理:即越大越好的指标

    2024年02月16日
    浏览(15)
  • 数学建模--综合评价方法

    数学建模--综合评价方法

    提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 例如:第一章 Python 机器学习入门之pandas的使用 提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档 评价方法大体上可分为两类,其主要区别在确定权重的方法上。一类是主观赋权

    2024年02月10日
    浏览(10)
  • 数学建模笔记(七):综合评价模型

    数学建模笔记(七):综合评价模型

    代表性,也就是这一指标的区分度,最具代表性就是对观测记录最具区分度 强调通行能力前后的变化 (一)指标一致化处理 (二)指标无量纲化处理 (三)定性指标量化 主观评价要量化,无法避免主观因素 f ( 3 ) f(3) f ( 3 ) 使用了两次,其实有四个式子,才解出了四个量

    2024年02月05日
    浏览(12)
  • 数学建模综合评价模型与决策方法

    数学建模综合评价模型与决策方法

    评价方法主要分为两类,其主要区别在确定权重的方法上 一类是主观赋权法,多次采取综合资讯评分确定权重,如综合指数法,模糊综合评判法,层次评判法,功效系数法等 另一类是客观赋权法,根据各指标间的相关关系或各指标变异程度来确定权数,如主成分分析法,因

    2024年04月23日
    浏览(24)
  • 数学建模学习(4):TOPSIS 综合评价模型及编程实战

    数学建模学习(4):TOPSIS 综合评价模型及编程实战

            需求:我们需要对各个银行进行评价,A-G为银行的各个指标,下面是银行的数据: 清空代码和变量的指令 层次分析法 每一行代表一个对象的指标评分 A为自己构造的输入判别矩阵 求特征值特征向量,找到最大特征值对应的特征向量  找到最大的特征值  找到最大

    2024年02月16日
    浏览(11)
  • 数学建模之秩和比综合评价方法(RSR)

    数学建模之秩和比综合评价方法(RSR)

    本文参考的是司守奎,孙兆亮主编的数学建模算法与应用(第二版) 秩和比综合评价方法(RSR)在医疗卫生领域的多指标综合评价、统计预测预报、统计质量控制等方面已经得到了广泛应用。 其中秩序和比是行或者列秩次的平均值,是一个非参数的统计量,具有0-1连续变量

    2024年02月04日
    浏览(13)
  • (数学建模)评价类-主成分分析

    (数学建模)评价类-主成分分析

    目录 一、模式是干什么的 1.1基本原理 1.2假设(假设检验用SPSS,后面介绍) 1.3计算步骤 二、算法是干啥的,算法和模型怎么对应 2.1程序清单 1.2部分代码的作用 1.3关键程序解释  三、SPSS  (matlab代码用来进行主成分评价,spss用来判断主成分的前提二是否满足) 1、通过正交

    2024年02月07日
    浏览(11)
  • 数学建模评价类方法01——灵敏度分析

    数学建模评价类方法01——灵敏度分析

    在数学建模的评价类问题中,灵敏度分析是一个重量级的评价方法,尤其是针对规划问题,是一定要在建模后对模型进行灵敏度分析的,用来检验模型的稳定性。 本文主要介绍了灵敏度分析的概念和如何对我们建立的模型进行灵敏度分析,最后,我们通过一个例题来具体讲解

    2023年04月09日
    浏览(77)
  • 层次分析法(APH):评价类问题(数学建模清风笔记)

    层次分析法(APH):评价类问题(数学建模清风笔记)

    评价的目标 有哪几种评价的方案 评价的标准/指标:题目中的背景资料、常识、网上(知网、万方、百度学术、谷歌学术)搜到的参考资料等结合   虫部落‐快搜 : https://search.chongbuluo.com/ 分而治之的思想,两个两个指标进行比较,最终根据两两比较的结果推算权重 判断矩

    2024年01月16日
    浏览(10)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包