深入理解数据结构第二弹——二叉树(2)——堆排序及其时间复杂度

这篇具有很好参考价值的文章主要介绍了深入理解数据结构第二弹——二叉树(2)——堆排序及其时间复杂度。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

看这篇前请先把我上一篇了解一下:深入理解数据结构第一弹——二叉树(1)——堆-CSDN博客

前言:

相信很多学习数据结构的人,都会遇到一种情况,就是明明最一开始学习就学习了时间复杂度,但是在后期自己写的程序或者是做到哪个需要判断时间复杂度的题时,仍然判断不出来时间复杂度是多少,今天,我们结合我们上期学习的堆,给大家深入剖析一下时间复杂度这个概念,同时更深入的理解堆的概念,方便我们后期应用堆进行排序等。

目录

一、堆排序

1、堆排序的大体思路

2、堆排序的实例讲解

二、堆排序的时间复杂度

向下排序的时间复杂度

向上排序的时间复杂度

堆排序整体的时间复杂度

总结


一、堆排序

1、堆排序的大体思路

在上一篇我们已经讲过了堆是什么东西,我们已经知道堆有大堆和小堆两种形式,堆排序的想法正是借助它的这个特点诞生的,例如:

数组 { 7,8 ,3 ,5 ,1 ,9 ,5 ,4}在堆中分布为:

深入理解数据结构第二弹——二叉树(2)——堆排序及其时间复杂度,数据结构,c语言,visual studio

如图展示的是小堆,首先我们先强调一点,降序是需要小堆来解决,升序是需要大堆来解决

比如说图上这个数组,我们要求它的降序序列时,因为堆顶元素一定是堆中最小的,所以我们就可以把堆顶元素与堆尾元素进行交换,然后把堆尾元素刨除在外再进行降序排列

深入理解数据结构第二弹——二叉树(2)——堆排序及其时间复杂度,数据结构,c语言,visual studio

2、堆排序的实例讲解

堆排序与堆相比并没有什么新东西,把我前面那章看明白,这里直接把代码呈上

(除了test.c)其他的是直接从上一章搬过来的

Seqlist.h

typedef int HPDataType;
typedef struct Heap
{
	HPDataType* a;
	int sz;
	int capacity;
}HP;
 
//初始化
void HeapInit(HP* php);
//销毁
void HeapDestory(HP* php);
//插入
void HeapPush(HP* php, HPDataType x);
//删除
void HeapPop(HP* php);
//找堆顶元素
HPDataType HeapTop(HP* php);
//判断是否为空
bool HeapEmpty(HP* php);
//算个数
int HeapSize(HP* php);

test.c

//堆排序
void HeapSort(int* a, int n)
{
	//建堆——向下调整建堆O(N-log(n))
	for (int i = (n - 1 - 1) / 2; i >= 0; i--)
	{
		AdjustDown(a, n, i);
	}
	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);

		//再调整,选出次小数
		AdjustDown(a, end, 0);
		end--;
	}
}
int main()
{
	int a[] = { 7,8,3,5,1,9,5,4 };
	HeapSort(a, sizeof(a) / sizeof(int));
	return 0;
}

Seqlist.c

//堆
//初始化
void HeapInit(HP* php)
{
	assert(php);
	php->a = NULL;
	php->capacity = 0;
	php->sz = 0;
}
//销毁
void HeapDestory(HP* php)
{
	free(php->a);
	free(php);
}
//交换
void Swap(HPDataType* p1, HPDataType* p2)
{
	HPDataType tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}
//删除
 
//向上调整(小堆)
void AdjustUp(HPDataType* a, int child)
{
	int parent = (child - 1) / 2;
	while (child > 0)
	{
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
 
			child = parent;
			parent = (child - 1) / 2;
		}
		else
		{
			break;
		}
	}
}
//向下调整
void AdjustDown(int* a, int n, int parent)
{
	int child = parent * 2 + 1;
	while (child<n)
	{
		if (child+1<n&&a[child + 1] < a[child])
		{
			++child;
		}
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}
 
//插入
void HeapPush(HP* php, HPDataType x)
{
	assert(php);
	if (php->sz == php->capacity)
	{
		int newcapacity = php->capacity == 0 ? 4 : php->capacity * 2;
		HPDataType* tmp = (HPDataType*)realloc(php->a, sizeof(HPDataType) * newcapacity);
		php->a = tmp;
		php->capacity = newcapacity;
	}
	php->a[php->sz] = x;
	php->sz++;
 
	//向上调整
	AdjustUp(php->a, php->sz - 1);
}
//删除
void HeapPop(HP* php)
{
	assert(php);
	assert(!HeapEmpty(php));
	Swap(&php->a[0], &php->a[php->sz - 1]);
	php->sz--;
	//向下调整
	AdjustDown(php->a, php->sz,0);
}
//判断是否为空
bool HeapEmpty(HP* php)
{
	assert(php);
	return php->sz == 0;
}
//找堆顶元素
HPDataType HeapTop(HP* php)
{
	assert(php);
	assert(!HeapEmpty(php));
	return php->a[0];
}
//算个数
int HeapSize(HP* php)
{
	assert(php);
	return php->sz;
}

实现上述代码,我们就可以实现堆排序了

深入理解数据结构第二弹——二叉树(2)——堆排序及其时间复杂度,数据结构,c语言,visual studio

二、堆排序的时间复杂度

我们都知道在实现堆时有向上排序和向下排序两种,细心的人可能已经注意到,我在实现上面那个堆排序用例时,用的是向下排序,原因就是向下排序的时间复杂度更低,接下来,我们就来分析一下这两种排序各自的时间复杂度

向下排序的时间复杂度

深入理解数据结构第二弹——二叉树(2)——堆排序及其时间复杂度,数据结构,c语言,visual studio

向上排序的时间复杂度

深入理解数据结构第二弹——二叉树(2)——堆排序及其时间复杂度,数据结构,c语言,visual studio

堆排序整体的时间复杂度

深入理解数据结构第二弹——二叉树(2)——堆排序及其时间复杂度,数据结构,c语言,visual studio

计算堆排序整体的时间复杂度就是计算上面这两步的时间复杂度

第一步:

因为这一步实际上就是多次向下调整建堆,所以这一步时间复杂度就是向下调整法时间复杂度的倍数,那根据渐进表示法就可以表示为O(N-log(N)),因为当N很大时,log(N)比N小很多,所以可以忽略表示为O(N)

第二步:

第二步外循环需要N次,内循环看似每次都是一个完整的向下排序法,但其实随着循环次数的增加,里面向下排序的时间复杂度在不断减小,因为堆尾排过去的数字实际上就不用再参与堆排序的,所以这一步时间复杂度实际上是O(N*log)

因此,堆排序的时间复杂度为O(N+N*log(N))

总结

堆排序及其时间复杂度的讲解就到此为止了,如果有不理解的地方欢迎在评论区中指出或者与我私信交流,欢迎各位大佬来访!!!

创作不易,还请各位大佬点赞支持!!!文章来源地址https://www.toymoban.com/news/detail-845180.html

到了这里,关于深入理解数据结构第二弹——二叉树(2)——堆排序及其时间复杂度的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • 【数据结构与算法篇】深入浅出——二叉树(详解)

    【数据结构与算法篇】深入浅出——二叉树(详解)

    ​👻内容专栏:《数据结构与算法专栏》 🐨本文概括: 二叉树是一种常见的数据结构,它在计算机科学中广泛应用。本博客将介绍什么是二叉树、二叉树的顺序与链式结构以及它的基本操作,帮助读者理解和运用这一重要概念。 🐼本文作者: 花 蝶 🐸发布时间:2023.6.5

    2024年02月08日
    浏览(13)
  • 【数据结构】带你深入理解栈

    【数据结构】带你深入理解栈

    栈是一种特殊的线性表。其只允许在固定的一端进行插入和删除元素的操作,进行数据的插入和删除的一端称作 栈顶 ,另外一端称作 栈底 。 栈不支持随机访问 ,栈的数据元素遵循 后进先出 的原则,即 LIFO(Late In First Out)。 也许有人曾经听说过 压栈 和 入栈 的术语,以

    2024年02月03日
    浏览(11)
  • 【数据结构】 顺序表详解!深入理解!

    【数据结构】 顺序表详解!深入理解!

    🎥 屿小夏 : 个人主页 🔥个人专栏 : 数据结构解析 🌄 莫道桑榆晚,为霞尚满天! ​ 什么是数据结构?我们为什么要学数据结构?数据结构中的顺序表长什么样子?它是怎么运用? ​ 本期我们将对这些一一讲解,彻底明白数据结构的重要性,以及顺序表是一种什么的数据

    2024年02月08日
    浏览(13)
  • 【脚踢数据结构】深入理解栈

    【脚踢数据结构】深入理解栈

    (꒪ꇴ꒪ ),Hello我是 祐言QAQ 我的博客主页:C/C++语言,Linux基础,ARM开发板,软件配置等领域博主🌍 快上🚘,一起学习,让我们成为一个强大的攻城狮! 送给自己和读者的一句鸡汤🤔: 集中起来的意志可以击穿顽石! 作者水平很有限,如果发现错误,可在评论区指正,感谢🙏

    2024年02月13日
    浏览(13)
  • 深入浅出二叉树— C语言版【数据结构】

    深入浅出二叉树— C语言版【数据结构】

    目录 ​编辑 1.树概念及结构 1.1树的概念 1.2 树的相关概念 ​1.3 树的表示 2.二叉树概念及结构   2.1概念 2.2 特殊的二叉树 2.3 二叉树的性质  2.4 简单二叉树题目练习  2.5 二叉树的存储结构 2.5.1 顺序存储——堆 2.5.2 链式存储 树是一种 非线性的数据结构 ,它是由n(n=0)个有

    2024年02月03日
    浏览(11)
  • 从0开始学C++ 第二十八课 数据结构深入 - 栈和队列

    第二十八课:数据结构深入 - 栈和队列 学习目标: 理解栈(Stack)的基本概念和特性。 掌握队列(Queue)的基本概念和特性。 学会在C++中使用栈和队列。 了解栈和队列的典型应用场景。 学习内容: 栈(Stack) 概念:栈是一种后进先出(LIFO, Last In First Out)的数据结构,元素

    2024年01月23日
    浏览(11)
  • 【数据结构】深入探讨二叉树的遍历和分治思想(一)

    【数据结构】深入探讨二叉树的遍历和分治思想(一)

    🚩 纸上得来终觉浅, 绝知此事要躬行。 🌟主页:June-Frost 🚀专栏:数据结构 🔥该文章主要讲述二叉树的递归结构及分治算法的思想。  为了实现二叉树的基本操作以及更好的了解二叉树的结构,先手动创造一个链式二叉树。  创建出来的结构: 📗创建出来的这棵二叉

    2024年02月08日
    浏览(13)
  • C/C++数据结构之深入了解树与二叉树:概念、存储结构和遍历

    C/C++数据结构之深入了解树与二叉树:概念、存储结构和遍历

    树是一种常见的数据结构,它在计算机科学和数学中都有广泛的应用。树结构的最简单形式是二叉树,本文将深入探讨树和二叉树的概念、存储结构以及二叉树的遍历,并提供一些实际的代码示例来帮助理解这些概念。 树 (Tree) 树是一种层次性数据结构,由节点(或称为顶点

    2024年02月06日
    浏览(13)
  • 【算法与数据结构】深入二叉树实现超详解(全源码优化)

    【算法与数据结构】深入二叉树实现超详解(全源码优化)

    上节我们学习了二叉树(前中后)序遍历 这节将实现二叉树。 让我们复习一下二叉树,接着就是二叉树的实现了😊,学习起来吧! 满二叉树:一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总

    2024年04月11日
    浏览(12)
  • (一)深入理解Mysql底层数据结构和算法

    (一)深入理解Mysql底层数据结构和算法

    索引是帮助MySQL高效获取数据的排好序的数据结构 数据结构模拟网站:Data Structure Visualization 二叉树 不适合做自增ID的数据结构。如下示意图,假设采用二叉树作为表自增主键ID的数据存储结果如下:当查询id为5的数据时,其查询次数为5次 红黑树 不适合做mysql的索引,因为当

    2024年01月25日
    浏览(15)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包