YOLOv9改进策略 | Conv篇 | 利用 Haar 小波的下采样HWD替换传统下采样(改变YOLO传统的Conv下采样)

这篇具有很好参考价值的文章主要介绍了YOLOv9改进策略 | Conv篇 | 利用 Haar 小波的下采样HWD替换传统下采样(改变YOLO传统的Conv下采样)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、本文介绍

本文给大家带来的改进机制是Haar 小波的下采样HWD替换传统下采样(改变YOLO传统的Conv下采样)在小波变换中,Haar小波作为一种基本的小波函数,用于将图像数据分解为多个层次的近似和细节信息,这是一种多分辨率的分析方法。我将其用在YOLOv9上其明显降低参数和GFLOPs在V9上使用该机制后参数量为530W计算量GFLOPs为240(均有大幅度下降),欢迎大家订阅本专栏,本专栏每周更新3-5篇最新机制,更有包含我所有改进的文件和交流群提供给大家。

  欢迎大家订阅我的专栏一起学习YOLO!  

YOLOv9改进策略 | Conv篇 | 利用 Haar 小波的下采样HWD替换传统下采样(改变YOLO传统的Conv下采样),YOLOv9有效涨点专栏,人工智能,计算机视觉,深度学习,YOLO,YOLOv9,yolov9,目标检测

YOLOv9改进策略 | Conv篇 | 利用 Haar 小波的下采样HWD替换传统下采样(改变YOLO传统的Conv下采样),YOLOv9有效涨点专栏,人工智能,计算机视觉,深度学习,YOLO,YOLOv9,yolov9,目标检测

专栏地址:YOLOv9有效涨点专栏-持续复现各种顶会内容-有效涨点-全网改进最全的专栏 文章来源地址https://www.toymoban.com/news/detail-855721.html

目录

一、本文介绍

二、原理介绍

三、核心代码 

四、手把手教你添加HWD机制

 4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四 

五、HWD的yaml文件和运行记录

5.1 HWD的yaml文件

5.2 HWD的训练过程截图 

五、本文总结


二、原理介绍

官方论文地址:官方论文地址点击此处即可跳转(论文需要花钱此论文)

官方代码地址:官方代码地址点击此处即可跳转


论文介绍了一种基于Haar小波变换的图像压缩方法及其压缩图像质量的评估方法。下面是对论文内容的详细分析:

主要内容和方法

1. Haar小波变换的介绍:

  •    Haar小波是最简单的小波形式之一,具有易于计算和实现的优点。
  •    文章中应用了二维离散小波变换(2D DWT),将图像信息矩阵分解为细节矩阵和信息矩阵。
  •    重构图像使用这些矩阵和小波变换的信息完成。

2. 图像压缩技术:

  •    压缩技术通过使用Haar小波作为基函数,减少图像文件大小,同时尽可能保持图像质量。
  •    压缩过程包括将图像信息转换为更易于编码的格式,这通常涉及转换、量化和熵编码。

结论:论文证明了Haar小波变换是一种有效的图像压缩工具,尤其适合需要高压缩比而又不希望图像质量下降太多的应用场景。此外,通过对比传统的DCT和最新的小波变换方法,作者指出Haar小波在处理图像边缘和细节方面具有一定的优势,尤其是在压缩高分辨率图像时。

 


三、核心代码 

本节的代码使用方式看章节四!

PS:# 按照这个第三方库需要安装pip install pytorch_wavelets==1.3.0
                                            # 如果提示缺少pywt库则安装 pip install 

import torch
import torch.nn as nn
try:
    from pytorch_wavelets import DWTForward # 按照这个第三方库需要安装pip install pytorch_wavelets==1.3.0
                                            # 如果提示缺少pywt库则安装 pip install PyWavelets
except:
    pass

class Down_wt(nn.Module):
    def __init__(self, in_ch, out_ch):
        super(Down_wt, self).__init__()
        self.wt = DWTForward(J=1, mode='zero', wave='haar')
        self.conv_bn_relu = nn.Sequential(
                                    nn.Conv2d(in_ch*4, out_ch, kernel_size=1, stride=1),
                                    nn.BatchNorm2d(out_ch),
                                    nn.ReLU(inplace=True),
                                    )
    def forward(self, x):
        yL, yH = self.wt(x)
        y_HL = yH[0][:,:,0,::]
        y_LH = yH[0][:,:,1,::]
        y_HH = yH[0][:,:,2,::]
        x = torch.cat([yL, y_HL, y_LH, y_HH], dim=1)
        x = self.conv_bn_relu(x)
        return x

if __name__ == "__main__":
    # Generating Sample image
    image_size = (1, 64, 224, 224)
    image = torch.rand(*image_size)

    # Model
    model = Down_wt(64, 32)

    out = model(image)
    print(out.size())

四、手把手教你添加HWD机制

 4.1 修改一

第一还是建立文件,我们找到如下yolov9-main/models文件夹下建立一个目录名字呢就是'modules'文件夹(用群内的文件的话已经有了无需新建)!然后在其内部建立一个新的py文件将核心代码复制粘贴进去即可。

YOLOv9改进策略 | Conv篇 | 利用 Haar 小波的下采样HWD替换传统下采样(改变YOLO传统的Conv下采样),YOLOv9有效涨点专栏,人工智能,计算机视觉,深度学习,YOLO,YOLOv9,yolov9,目标检测

 


4.2 修改二 

第二步我们在该目录下创建一个新的py文件名字为'__init__.py'(用群内的文件的话已经有了无需新建),然后在其内部导入我们的检测头如下图所示。

YOLOv9改进策略 | Conv篇 | 利用 Haar 小波的下采样HWD替换传统下采样(改变YOLO传统的Conv下采样),YOLOv9有效涨点专栏,人工智能,计算机视觉,深度学习,YOLO,YOLOv9,yolov9,目标检测


4.3 修改三 

然后我们找到如下文件''models/yolo.py''在开头的地方导入我们的模块按照如下修改->

(如果你看了我多个改进机制此处只需要添加一个即可,无需重复添加)

注意的添加位置要放在common的导入上面!!!!!

YOLOv9改进策略 | Conv篇 | 利用 Haar 小波的下采样HWD替换传统下采样(改变YOLO传统的Conv下采样),YOLOv9有效涨点专栏,人工智能,计算机视觉,深度学习,YOLO,YOLOv9,yolov9,目标检测​​​​


4.4 修改四 

按照我的添加在parse_model里添加即可。

YOLOv9改进策略 | Conv篇 | 利用 Haar 小波的下采样HWD替换传统下采样(改变YOLO传统的Conv下采样),YOLOv9有效涨点专栏,人工智能,计算机视觉,深度学习,YOLO,YOLOv9,yolov9,目标检测

到此就修改完成了,大家可以复制下面的yaml文件运行。


五、HWD的yaml文件和运行记录

5.1 HWD的yaml文件

主干和Neck全部用上该卷积轻量化到机制的yaml文件。

# YOLOv9

# parameters
nc: 80  # number of classes
depth_multiple: 1  # model depth multiple
width_multiple: 1  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()

# anchors
anchors: 3

# YOLOv9 backbone
backbone:
  [
   [-1, 1, Silence, []],
   # conv down
   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2
   # conv down
   [-1, 1, Down_wt, [128]],  # 2-P2/4
   # elan-1 block
   [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 3
   # conv down
   [-1, 1, Down_wt, [256]],  # 4-P3/8
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 5
   # conv down
   [-1, 1, Down_wt, [512]],  # 6-P4/16
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 7
   # conv down
   [-1, 1, Down_wt, [512]],  # 8-P5/32
   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 9
  ]

# YOLOv9 head
head:
  [
   # elan-spp block
   [-1, 1, SPPELAN, [512, 256]],  # 10

   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 7], 1, Concat, [1]],  # cat backbone P4

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 13

   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 5], 1, Concat, [1]],  # cat backbone P3

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 16 (P3/8-small)

   # conv-down merge
   [-1, 1, Down_wt, [256]],
   [[-1, 13], 1, Concat, [1]],  # cat head P4

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 19 (P4/16-medium)

   # conv-down merge
   [-1, 1, Down_wt, [512]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 22 (P5/32-large)
   
   # routing
   [5, 1, CBLinear, [[256]]], # 23
   [7, 1, CBLinear, [[256, 512]]], # 24
   [9, 1, CBLinear, [[256, 512, 512]]], # 25
   
   # conv down
   [0, 1, Conv, [64, 3, 2]],  # 26-P1/2

   # conv down
   [-1, 1, Down_wt, [128]],  # 27-P2/4

   # elan-1 block
   [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 28

   # conv down fuse
   [-1, 1, Down_wt, [256]],  # 29-P3/8
   [[23, 24, 25, -1], 1, CBFuse, [[0, 0, 0]]], # 30  

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 31

   # conv down fuse
   [-1, 1, Down_wt, [512]],  # 32-P4/16
   [[24, 25, -1], 1, CBFuse, [[1, 1]]], # 33 

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 34

   # conv down fuse
   [-1, 1, Down_wt, [512]],  # 35-P5/32
   [[25, -1], 1, CBFuse, [[2]]], # 36

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 37

   # detect
   [[31, 34, 37, 16, 19, 22], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)
  ]


5.2 HWD的训练过程截图 

YOLOv9改进策略 | Conv篇 | 利用 Haar 小波的下采样HWD替换传统下采样(改变YOLO传统的Conv下采样),YOLOv9有效涨点专栏,人工智能,计算机视觉,深度学习,YOLO,YOLOv9,yolov9,目标检测


五、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv9改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏地址:YOLOv9有效涨点专栏-持续复现各种顶会内容-有效涨点-全网改进最全的专栏 

到了这里,关于YOLOv9改进策略 | Conv篇 | 利用 Haar 小波的下采样HWD替换传统下采样(改变YOLO传统的Conv下采样)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • YOLOV5/YOLOV7/YOLOV8改进:用于低分辨率图像和小物体的新 CNN 模块SPD-Conv

    1.该文章属于YOLOV5/YOLOV7/YOLOV8改进专栏,包含大量的改进方式,主要以2023年的最新文章和2022年的文章提出改进方式。 2.提供更加详细的改进方法,如将注意力机制添加到网络的不同位置,便于做实验,也可以当做论文的创新点。 3.涨点效果:SPD-Conv提升小目标识别,实现有效涨

    2024年02月09日
    浏览(13)
  • MATLAB——多层小波的重构

    MATLAB——多层小波的重构

    %%  学习目标:多层小波的重构 %%  程序1 clear all; close all; load noissin.mat; x=noissin; [C,L]=wavedec(x,3,\\\'db1\\\');   %小波多层分解 y=waverec(C,L,\\\'db1\\\');       %重构,必须小波类型一致 e=max(abs(x-y))             %重构的误差 %%  程序2 clear all; close all; load noissin.mat; x=noissin; [C,L]=wavedec(x,3,\\\'db1\\\')

    2024年02月06日
    浏览(10)
  • MATLAB——二维小波的单层分解

    MATLAB——二维小波的单层分解

    直接复制代码就可以使用,文末有我的微信公众号欢迎关注呦! %%  学习目标:二维小波的单层分解 %%  二维小波适合图像处理和分析,将图像分解为4个图像  两个维度  低通,高通 clear all; close all; load woman.mat; %%  which woman.mat Y=ind2gray(X,map);                %将索引图像转

    2024年02月04日
    浏览(8)
  • 【YOLOv8改进】 SPD-Conv空间深度转换卷积,处理低分辨率图像和小对象问题 (论文笔记+引入代码)

    【YOLOv8改进】 SPD-Conv空间深度转换卷积,处理低分辨率图像和小对象问题 (论文笔记+引入代码)

    卷积神经网络(CNNs)在许多计算机视觉任务中取得了巨大成功,例如图像分类和目标检测。然而,当面对图像分辨率低或对象较小的更加困难的任务时,它们的性能迅速下降。在本文中,我们指出这一问题根源于现有CNN架构中一个有缺陷但常见的设计,即使用了步长卷积和

    2024年04月14日
    浏览(11)
  • Haar小波提升算法

    Haar小波提升算法

    传统的小波变换是在傅里叶变换的基础上演变而来,计算过程中存在着大量的卷积运算或是乘累加的计算,如若在硬件上实现,势必会消耗大量的寄存器资源,而且速度也上不去。提升小波又称为第二代小波,最早是由 Sweldens W.博士于 1995 年在贝尔实验室提出,相对于 Malla

    2023年04月09日
    浏览(9)
  • Haar小波下采样模块

    Haar小波下采样模块

    论文原址:Haar wavelet downsampling: A simple but effective downsampling module for semantic segmentation - ScienceDirect 原文代码:HWD/HWD.py at main · apple1986/HWD (github.com) 深度卷积神经网络 (DCNN) 通常采用标准的下采样操作,例如最大池化、平均池化和跨步卷积,这可能会导致信息丢失。丢失的信

    2024年01月23日
    浏览(6)
  • 芒果YOLOv8改进106:卷积Conv篇:DO-DConv卷积提高性能涨点,使用over-parameterized卷积层提高CNN性能

    芒果YOLOv8改进106:卷积Conv篇:DO-DConv卷积提高性能涨点,使用over-parameterized卷积层提高CNN性能 💡🚀🚀🚀本博客 改进源代码改进 适用于 YOLOv8 按步骤操作运行改进后的代码即可 该专栏完整目录链接: 芒果YOLOv8深度改进教程

    2024年03月15日
    浏览(30)
  • 【youcans 的 OpenCV 学习课】21. Haar 小波变换与 Haar 特征检测(上)

    【youcans 的 OpenCV 学习课】21. Haar 小波变换与 Haar 特征检测(上)

    专栏地址:『youcans 的图像处理学习课』 文章目录:『youcans 的图像处理学习课 - 总目录』 1.1 小波变换基本概念 信号变换是为了分析时间和频率之间的相互关系。 傅里叶变换(FFT)将信号表示为无限三角函数的叠加,从而将信号从时域转换到频域,可以分析信号的频谱,但

    2023年04月23日
    浏览(15)
  • 【youcans 的 OpenCV 学习课】21. Haar 小波变换

    【youcans 的 OpenCV 学习课】21. Haar 小波变换

    专栏地址:『youcans 的图像处理学习课』 文章目录:『youcans 的图像处理学习课 - 总目录』 1.1 小波变换基本概念 信号变换是为了分析时间和频率之间的相互关系。 傅里叶变换(FFT)将信号表示为无限三角函数的叠加,从而将信号从时域转换到频域,可以分析信号的频谱,但

    2024年02月04日
    浏览(12)
  • 【youcans 的图像处理学习课】21. Haar 小波变换

    【youcans 的图像处理学习课】21. Haar 小波变换

    专栏地址:『youcans 的图像处理学习课』 文章目录:『youcans 的图像处理学习课 - 总目录』 1.1 小波变换基本概念 信号变换是为了分析时间和频率之间的相互关系。 傅里叶变换(FFT)将信号表示为无限三角函数的叠加,从而将信号从时域转换到频域,可以分析信号的频谱,但

    2024年02月05日
    浏览(13)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包