Flink 架构深度解析

这篇具有很好参考价值的文章主要介绍了Flink 架构深度解析。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Flink 是一个开源的流处理框架,用于处理和分析实时数据流。它以其高吞吐量、低延迟和强大的状态管理能力而闻名。本文将深入探讨 Flink 的架构设计,帮助读者理解其内部工作原理。

1. 引言

在当今的数据驱动世界中,实时数据处理变得越来越重要。Flink 提供了一个高性能、可扩展的平台,用于构建实时数据分析和处理应用。它支持事件时间处理和精确一次(exactly-once)处理语义,确保数据的准确性和一致性。Flink 的架构设计是其高性能和可靠性的基础。

2. Flink 架构概览

Flink 的架构可以分为以下几个主要部分:

  • Master Nodes (JobManager 和 TaskManager)
  • JobGraph 和 ExecutionGraph
  • DataStream API 和 Table API
  • 状态管理和容错机制
  • 部署模式

2.1 Master Nodes

Flink 的 Master Nodes 包括 JobManager 和 TaskManager。JobManager 是负责接收提交的作业、管理作业的生命周期和调度任务的组件。TaskManager 负责执行作业中的任务,并与 JobManager 通信。

2.2 JobGraph 和 ExecutionGraph

JobGraph 是 Flink 作业的逻辑表示,它描述了作业的拓扑结构和转换操作。ExecutionGraph 是 JobGraph 的物理表示,它包含了任务的执行计划和资源分配。

2.3 DataStream API 和 Table API

DataStream API 是 Flink 的核心 API,用于构建流处理应用。Table API 是建立在 DataStream API 之上的声明式 API,它允许用户以 SQL 风格的方式进行流处理。

2.4 状态管理和容错机制

Flink 的状态管理是其强大的流处理能力的关键。它允许操作符(Operators)在处理事件时维护状态。Flink 的容错机制确保了状态的一致性和作业的高可用性。

2.5 部署模式

Flink 支持多种部署模式,包括 Standalone、YARN、Mesos 和 Kubernetes,以及 Session 和 Job 模式。

3. Flink 架构详细解析

3.1 JobManager

JobManager 是 Flink 集群的大脑,负责协调和管理作业。它的主要职责包括:

  • 作业调度:接收提交的作业,将作业的 JobGraph 转换为 ExecutionGraph,并调度任务到 TaskManager 上执行。
  • 资源管理:根据作业的资源需求和集群的状态,分配资源给任务。
  • 故障恢复:在发生故障时,负责重启失败的任务,并恢复状态。

3.2 TaskManager

TaskManager 是 Flink 集群的工作节点,负责执行具体的任务。每个 TaskManager 可以运行多个任务槽(Task Slot),每个槽可以运行一个并行任务。TaskManager 的主要职责包括:

  • 执行任务:根据 JobManager 的调度执行任务,并与 JobManager 报告任务的状态。
  • 资源提供:提供任务执行所需的资源,如 CPU、内存等。
  • 状态管理:为运行在其上的任务维护状态。

3.3 JobGraph 和 ExecutionGraph

JobGraph 是作业的逻辑表示,它包含了作业的所有操作符和连接。每个操作符代表一个转换步骤,连接定义了数据如何在操作符之间流动。JobGraph 通过一系列的转换操作构建而成。

ExecutionGraph 是 JobGraph 的执行表示,它包含了任务的详细执行计划。ExecutionGraph 中的顶点代表操作符,边代表数据的传输路径。ExecutionGraph 还包含了任务的调度信息,如任务分配给哪个 TaskManager。

3.4 DataStream API 和 Table API

DataStream API 是 Flink 用于构建流处理应用的编程接口。它提供了丰富的操作符,如 map、reduce、filter 等,以及窗口函数和状态管理功能。DataStream API 支持事件时间处理和水印机制,确保事件的准确处理。

Table API 是 Flink 的高级抽象,它允许用户以类似 SQL 的方式进行流处理。Table API 建立在 DataStream API 之上,提供了更简洁的语法和更强大的表达能力。

3.5 状态管理和容错机制

状态管理是 Flink 的核心特性之一。Flink 允许操作符在处理事件时维护状态,这些状态可以是键控状态、操作符状态或全局状态。Flink 使用状态后端(如 RocksDBStateBackend 或 FsStateBackend)来存储和管理状态。

Flink 的容错机制基于分布式快照算法,确保在发生故障时可以恢复到一个一致的状态。Flink 通过检查点(Checkpoints)和保存点(Savepoints)来实现状态的持久化和恢复。

3.6 部署模式

Flink 支持多种部署模式,以适应不同的生产环境。Standalone 模式是最简单的部署方式,适用于小规模集群。YARN、Mesos 和 Kubernetes 模式允许 Flink 在这些资源管理平台上运行,实现资源的动态分配和扩展。

4. Flink 架构的优势

Flink 的架构设计带来了多个优势:

  • 高吞吐量和低延迟:Flink 的事件驱动模型和优化的网络通信机制使其能够处理大规模数据流,同时保持低延迟。
  • 强大的状态管理:Flink 的状态管理能力使其能够处理复杂的流处理场景,如事件时间处理和状态丰富的转换。
  • 高可用性:Flink 的容错机制确保了作业的高可用性和状态的一致性。
  • 灵活的部署:Flink 支持多种部署模式,可以轻松集成到现有的基础设施中。

5. 结论

Flink 的架构设计是其成功的关键。它通过高效的事件处理模型、强大的状态管理和灵活的部署选项,为实时数据分析提供了一个可靠和高效的平台。随着数据流处理需求的不断增长,Flink 将继续在实时数据处理领域发挥重要作用。文章来源地址https://www.toymoban.com/news/detail-859212.html

6. 参考文献

  • Apache Flink 官方文档
  • Flink: Scalable Stream and Batch Data Processing, by Fabian Hueske, et al.
  • Stream Processing with Apache Flink, by Vasiliki Kalavri

到了这里,关于Flink 架构深度解析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包赞助服务器费用

相关文章

  • Flink 系列四 Flink 运行时架构

    Flink 系列四 Flink 运行时架构

    目录 前言 介绍 1、程序结构 1.1、Source 1.2、Transformation 1.3、Sink 1.4、数据流 2、Flink运行时组件 2.1、Dispatcher 2.2、JobManager 2.3、TaskManager 2.4、ResourceManager 3、任务提交流程 3.1、standalone 模式 3.2、yarn 模式 4、任务调度原理 4.1、并行度 4.1.1、概念 4.4.2、Flink中的并行度设置 4.2、Ta

    2024年02月14日
    浏览(9)
  • 大数据Flink(五十五):Flink架构体系

    大数据Flink(五十五):Flink架构体系

    文章目录 Flink架构体系 一、 Flink中的重要角色 二、Flink数据流编程模型

    2024年02月14日
    浏览(12)
  • 深入理解 Flink(一)Flink 架构设计原理

    深入理解 Flink(一)Flink 架构设计原理

    深入理解 Flink 系列文章已完结,总共八篇文章,直达链接: 深入理解 Flink (一)Flink 架构设计原理 深入理解 Flink (二)Flink StateBackend 和 Checkpoint 容错深入分析 深入理解 Flink (三)Flink 内核基础设施源码级原理详解 深入理解 Flink (四)Flink Time+WaterMark+Window 深入分析 深入

    2024年02月02日
    浏览(11)
  • 大数据Flink(六十四):Flink运行时架构介绍

    大数据Flink(六十四):Flink运行时架构介绍

    文章目录 Flink运行时架构介绍 一、系统架构 二、​​​​​​​​​​​​​​整体构成 三、作业管理器(JobManager) 四、任务管理器(TaskManager) 我们已经对 Flink 的主要特性和部署提交有了基本的了解,那它的内部又是怎样工作的,集群配置设置的一些参数又到底有什么

    2024年02月11日
    浏览(46)
  • Flink、Yarn架构,以Flink on Yarn部署原理详解

    Flink、Yarn架构,以Flink on Yarn部署原理详解

    Apache Flink是一个开源的分布式流处理框架,它可以处理实时数据流和批处理数据。Flink的架构原理是其实现的基础,架构原理可以分为以下四个部分:JobManager、TaskManager、JobGraph、Checkpoint。 JobManager JobManager是Flink集群的控制节点,负责接收用户提交的任务,将任务分配给Task

    2024年02月12日
    浏览(8)
  • Flink实战之运行架构

    Flink实战之运行架构

    本文章:重点是分析清楚运行架构以及并行度与slot的分配 Flink中的节点可以分为JobManager和TaskManager。 JobManager处理器也称为Master,用于协调分布式任务执行。他们用来调度task进行具体的任务。TaskManager处理器也称为Worker,用于实际执行任务。 一个有效的Flink集群中可以包含多

    2024年01月18日
    浏览(10)
  • 尚硅谷大数据Flink1.17实战教程-笔记03【Flink运行时架构】

    尚硅谷大数据Flink1.17实战教程-笔记03【Flink运行时架构】

    尚硅谷大数据技术-教程-学习路线-笔记汇总表【课程资料下载】 视频地址:尚硅谷大数据Flink1.17实战教程从入门到精通_哔哩哔哩_bilibili 尚硅谷大数据Flink1.17实战教程-笔记01【Flink概述、Flink快速上手】 尚硅谷大数据Flink1.17实战教程-笔记02【Flink部署】 尚硅谷大数据Flink1.17实

    2024年02月16日
    浏览(26)
  • Flink运行架构以及容错机制

    Flink运行架构以及容错机制

    flink是一个开发框架,用于进行数据批处理,本文主要探讨Flink任务运行的的架构。由于在日常生产环境中,常用的是flink on yarn 和flink on k8s两种类型的模式,因此本文也主要探讨这两种类型的异同,以及不同角色的容错机制。 JM是一个独立的JVM进程,在HA场景下一个App能够同

    2024年01月24日
    浏览(12)
  • flink笔记:022-26系统架构

    flink笔记:022-26系统架构

    其实客户端并不是处理系统的一部分,它只负责作业的 提交。具体来说,就是调用程序的 main 方法,将代码转换成“数据流图”(Dataflow Graph), 并最终生成作业图(JobGraph),一并发送给 JobManager。提交之后,任务的执行其实就跟客 户端没有关系了 作业管理器(JobManager)

    2023年04月08日
    浏览(9)
  • 【大数据】Flink 架构(四):状态管理

    【大数据】Flink 架构(四):状态管理

    《 Flink 架构 》系列(已完结),共包含以下 6 篇文章: Flink 架构(一):系统架构 Flink 架构(二):数据传输 Flink 架构(三):事件时间处理 Flink 架构(四):状态管理 Flink 架构(五):检查点 Checkpoint(看完即懂) Flink 架构(六):保存点 Savepoint 😊 如果您觉得这篇

    2024年02月19日
    浏览(9)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包