线性代数 - 应该学啥 以及哪些可以交给计算机

这篇具有很好参考价值的文章主要介绍了线性代数 - 应该学啥 以及哪些可以交给计算机。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

        AI很热,所以小伙伴们不免要温故知新旧时噩梦 - 线代。

        (十几年前,还有一个逼着大家梦回课堂的风口,图形学。)

        这个真的不是什么美好的回忆,且不说老师的口音,也不说教材的云山雾绕,单单是求解这件事情,你直接用python的numpy的lin-alg来做,它不香吗?

        (matlab其实更好,还可以看动画,不过动辄几十个G,然后价格/破解也劝退,非专业选手装属实蛋疼,国内专业选手还在被禁止使用)

        掰着手指头数一数,最烦的几种题型,其实都是可以一行搞定的 - 

        行列式计算 秩的计算 - 

det = numpy.linalg.det(a)
rank = numpy.linalg.rank(a)

        向量点乘 叉乘 - 

#内积 面积
muti_dot = numpy.dot(b, a)
#外积 法向量
muti_cross = numpy.cross(b, a)

        矩阵求逆 - 

inv = numpy.inv(a)

        特征根与特征向量 - 

x1,x2 = numpy.linalg.eig(a)

        还免费附赠求解方程 - 

x = numpy.linalg.solve(A, b)

        数学学习,最核心的是理解定义。最可惜的是教材上的所有重要的定义,几乎不是给正常地球人看的,不说是线性无关,至少也是驴唇不对马嘴。对于智商摸到天顶星的大神当然是无所谓,因为你把教材上的公式留下就够了,但是对于我等资质平庸者,那就是天坑,一见误终身那种。

        拜托,一个工科生,学的目的不就是,3种分解拆吧拆吧,然后理解/优化算法?

#奇异值分解 对角阵
u,sigma,v = numpy.linalg.svd(A)

#QR分解 正规正交阵-上三角阵
q,r = numpy.linalg.qr(A)

#LU分解/Cholesky分解 下三角阵-上三角阵
l = numpy.linalg.cholesky(A)

        线代学习中,我认为最核心最提纲挈领的几个点 - 

        第一个,数组(行m),向量(列n),与矩阵(mxn)的关系,其实一个式子就够(矩阵和向量相乘,也就是我们常见的解方程组的样式) (借用神图)- 

线性代数 - 应该学啥 以及哪些可以交给计算机,线性代数

        额,这个图目的不是,计算机可以用它来解方程了!当然,用计算机解方程这点也很重要。

        画重点!线性变换的概念就是从这里面出来的。对于矩阵A,用一个n维的向量x乘它,就是对于这个矩阵本身的线性变换。也是从这里,线性代数被引入了工程。

        第二个,矩阵分块和零矩阵。所有变换技巧的基础,就是适当分块,然后构造零子矩阵。各路大神们按照自己的需要和喜欢,整出了不同的分解方法,用来算相关性,推荐歌曲和商品,算pagerank,预测概率,等等等等等。比如,存入计算机的数据是稀疏矩阵,如果不把这些0踢出来,未经优化的数据直接参与运算,强如老黄的GPU,也得直接算的冒烟冒火吐了跪了。比如,不同的技巧对应不同的算法,同一个问题,算法的复杂度,区别天渊。

        第三个,对角阵。这个是理解维数,坐标的基础,并且进一步可以扩张向量空间。

        当然,对于科班生,每一个看似自然的定理,弄清背后的证明花的时间都远超前面这些。

        统计是数据,图像是数据,海量的数据只能交给计算机,计算机理解相关性,唯一的方式就是靠矩阵(填格子得到)和线性代数。这也就从另一个方面说明了,IT的风口为啥总是要大家温书。假如十年后再来一个风口,大概率大家还是要一脑袋往线代上扎!

PS - 如果觉得不好,请告诉作者改进;如果觉得好,请推荐给你的小伙伴。

        文章来源地址https://www.toymoban.com/news/detail-861341.html

到了这里,关于线性代数 - 应该学啥 以及哪些可以交给计算机的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 线性代数的学习和整理19,特征值,特征向量,以及引入的正交化矩阵概念

    目录 1 什么是特征值和特征向量? 1.1 特征值和特征向量这2个概念先放后 1.2 直观定义 1.3 严格定义 2 如何求特征值和特征向量 2.1 方法1:结合图形看,直观方法求 2.1.1 单位矩阵的特征值和特征向量 2.1.2 旋转矩阵 2.2  根据严格定义的公式 A*X=λ*X 来求 2.3  特征方程 2.4 互异特

    2024年02月09日
    浏览(56)
  • 线性代数的学习和整理2:什么是线性,线性相关,线性无关 及 什么是线性代数?

    目录 1 写在前面的话 1.1 为什么要先总结一些EXCEL计算矩阵的工具性知识, 而不是一开始就从基础学起呢?  1.2 关于线性代数入门时的各种灵魂发问: 1.3 学习资料 2 什么是线性(关系)? 2.1 线性的到底是一种什么关系: 线性关系=正比例/正相关关系 ≠ 直线型关系 2.2 一次函数

    2024年02月11日
    浏览(115)
  • 线性代数思维导图--线性代数中的线性方程组(1)

    1.解线性方程组 2.线性方程组解的情况 3.线性方程组的两个基本问题 1.阶梯型矩阵性质 2.简化阶梯型矩阵(具有唯一性) 3.行化简算法 4.线性方程组的解 1.R^2中的向量 2.R^2中的几何表示 3.R^n中的向量 4.线性组合与向量方程 5.span{v},span{u,v}的几何解释 1.定义 2.定理 3.解的存在性

    2024年02月02日
    浏览(76)
  • 【线性代数及其应用 —— 第一章 线性代数中的线性方程组】-1.线性方程组

    所有笔记请看: 博客学习目录_Howe_xixi的博客-CSDN博客 https://blog.csdn.net/weixin_44362628/article/details/126020573?spm=1001.2014.3001.5502 思维导图如下:  内容笔记如下:

    2024年02月06日
    浏览(50)
  • 线性代数的学习和整理15:线性代数的快速方法

       5  空间的同构 下面再谈谈同构。线性空间千千万,应如何研究呢?同构就是这样一个强大的概念,任何维数相同的线性空间之间是同构的,空间的维数是简单而深刻的,简单的自然数居然能够刻画空间最本质的性质。借助于同构,要研究任意一个n维线性空间,只要研究

    2024年02月11日
    浏览(45)
  • 线性代数的学习和整理9:线性代数的本质(未完成)

    目录 1 相关英语词汇 1.1 元素 1.2 计算 1.3 特征 1.4 线性相关 1.5 各种矩阵 1.6 相关概念 2 可参考经典线性代数文档 2.1 学习资料 2.2 各种文章和视频 2.3 各种书 2.4 下图是网上找的思维导图 3 线性代数的本质 3.1 线性代数是第2代数学模型 一般的看法 大牛总结说法: 3.2   线性代

    2024年02月09日
    浏览(48)
  • 线性代数 4 every one(线性代数学习资源分享)

            版权说明,以下我分享的都是一个名叫Kenji Hiranabe的日本学者,在github上分享的,关于Gilbert Strang教授所撰写的《Linear Algebra for Everyone》一书的总结,更像是一个非常精美的线性代数手册,欢迎大家下载收藏。如果我的的这篇分享文章中涉嫌侵犯版权,我会立即删

    2024年02月15日
    浏览(40)
  • 线性代数·关于线性相关和线性组合

    我本来对线性相关和线性组合的理解是,如果几个向量线性相关,那么等价于他们可以互相线性表示。但其实这是一个误区。 线性相关是对一组向量之间的关系而言的,这里面会存在极大线性无关组。极大线性无关组确定了一个空间,线性相关表示向量都落在这个空间里,会

    2024年02月12日
    浏览(36)
  • 线性代数(五) 线性空间

    《线性代数(三) 线性方程组向量空间》我通过解线性方程组的方式去理解线性空间。此章从另一个角度去理解 大家较熟悉的:平面直角坐标系是最常见的二维空间 空间由无穷多个坐标点组成 每个坐标点就是一个向量 反过来,也可说:2维空间,是由无穷多个2维向量构成 同样

    2024年02月11日
    浏览(35)
  • 线性代数(六) 线性变换

    《线性空间》定义了空间,这章节来研究空间与空间的关联性 函数是一个规则或映射,将一个集合中的每个元素(称为自变量)映射到另一个集合中的唯一元素(称为因变量)。 一般函数从 “A” 的每个元素指向 “B” 的一个函数 它不会有一个 “A” 的元素指向多于一个

    2024年02月09日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包